Samarium(II)-mediated 4-exo-trig cyclisations of unsaturated aldehydes. A stereoselective approach to functionalised cyclobutanols

Derek Johnston, Catherine F. McCusker, Kenneth Muir and David J. Procter *
Department of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, UK G12 8QQ. E-mail: davidp@chem.gla.ac.uk

Received (in Cambridge, UK) 3rd December 1999, Accepted 14th January 2000

Abstract

γ, δ-Unsaturated aldehydes having a fully substituted centre in either the α - or β-positions, have been prepared from substituted γ-butyrolactones and undergo efficient 4-exo-trig cyclisation on treatment with samarium(II) iodide to give functionalised cyclobutanols. In all cases cyclisation occurs with complete diastereocontrol to give anti-cyclobutanol products. The stereochemistry of the products has been confirmed by NOE and X-ray crystallographic studies. In the cyclisation of substrates having a third substituent on the double bond, α - to the ester, significant control is achieved at the third newly formed stereocentre lying outside the ring. The origin of the stereoselectivity at this third centre and its marked dependence on cosolvent are discussed.

Introduction

Samarium(II) iodide continues to prove an incredibly versatile reagent in organic synthesis. ${ }^{1}$ Arguably the most important role for samarium(II) iodide lies in the mediation of radical or anionic cyclisations, or sequences that involve both types of process. ${ }^{2}$ The samarium(II) mediated reductive coupling of unsaturated aldehydes or ketones is a particularly powerful cyclisation protocol which allows a variety of cyclic alcohols of varying ring size to be assembled under mild conditions with moderate to good diastereoselectivity. ${ }^{3}$ Importantly, the functionality present in the starting material is retained in the product, albeit in a different oxidation state, and thus highly functionalised products with multiple stereocentres can often be prepared in an atom-efficient manner. Our interest in lanthanide-mediated transformations led us to consider new routes to small ring systems and in particular, to cyclobutanols, using cyclisations mediated by samarium(II) iodide (Scheme 1).

Scheme 1 General representation of the samarium(II)-mediated 4-exotrig cyclisation of unsaturated aldehydes.

Radical cyclisations forming cyclobutane rings are reversible and hence few efficient reactions employing such processes have been reported. ${ }^{4}$ We believed that the ability of samarium(II) iodide to not only generate carbon-centred radicals but to further reduce such radicals to the corresponding carbanions might provide a way of trapping the cyclic product and hence prevent the facile ring-opening process. ${ }^{5}$ A radical cyclisation pathway, however, is not the only mechanistic possibility. The operation of an alternative anionic mechanism is also possible. ${ }^{6}$

There is only one previous example of a samarium(II) mediated 4-exo-trig 'ketyl-olefin' cyclisation, ${ }^{7}$ prior to our preliminary report, ${ }^{8}$ and this disclosure contained only a single example employing substrate $\mathbf{1 3}$ and using relatively harsh conditions. Despite limited precedent, we believed the reaction had
considerable potential as a general route to cyclobutanols and that the nature of the reaction would result in a highly diastereoselective process.

Cyclobutane and cyclobutanol derivatives are important building blocks in organic synthesis and constitute a structural motif that is found extensively in natural products, ${ }^{9}$ and nonnatural, biologically important molecules. ${ }^{10}$ Cyclobutanes are most often prepared using photochemical [2 +2] cycloaddition processes. ${ }^{11}$ Although these reactions are useful in synthesis, alternative processes which would allow more substituted cyclobutanes, and in particular cyclobutanols, to be prepared with good stereoselectivity, would be very useful. We felt that a samarium(II)-mediated approach to cyclobutanols would follow a well-defined stereochemical course, very different to those involved in conventional cyclobutane ring-forming reactions.
Here we report in full, the synthesis of aldehyde substrates and their cyclisation using samarium(II) iodide, and thus the development of a general, stereoselective approach to functionalised cyclobutanols.

Results and discussion

Preparation of cyclisation substrates

Simple cyclisation substrates were prepared by a general route from γ-butyrolactone or α-benzyloxy- γ-butyrolactone. The lactone starting materials were first mono- or dimethylated and then reduced to the corresponding lactols. Ring-opening with propane-1,3-dithiol under protic or Lewis acid conditions then gave alcohols 2a-c. Modified Swern oxidation and subsequent Wittig reaction with (ethoxycarbonylmethylene)triphenylphosphorane, or (1-ethoxycarbonylethylidene)triphenylphosphorane, gave the protected unsaturated esters 3aa-c. Finally, removal of the dithioacetal protection gave the required series of unsaturated aldehydes $\mathbf{4 a a}, \mathbf{4 a b}, \mathbf{4 b}$, and $\mathbf{4 c}$ in good overall yield (Scheme 2).

Diallyl substrate 7 a and the related cyclopentene substrate 7b were prepared from 3,3-diallyl-2,3,4,5-tetrahydrofuran-2one 5a. Conversion of $\mathbf{5 a}$ to spirocyclic lactone $\mathbf{5 b}$ was achieved using Grubb's catalyst in a facile ring-closing metathesis reaction. Reduction of $\mathbf{5 a}$ and $\mathbf{5 b}$ to the corresponding lactols

Scheme 2 Reagents and conditions: i, DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; ii, propane-1,3-dithiol, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA \mathrm{MS}$, $-15^{\circ} \mathrm{C}-\mathrm{rt}, 30-65 \%$ (for two steps); iii, py $\cdot \mathrm{SO}_{3}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{PPh}_{3}=\mathrm{CRCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $71-86 \%$ (for two steps); v, CaCO_{3}, MeI, MeCN, $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 85-98 \%$.
followed by ring-opening with propane-1,3-dithiol under Lewis acid conditions gave 6a,b. Cyclisation substrates 7a,b were then prepared from $\mathbf{6 a}$ and $\mathbf{6 b}$ using the approach outlined in Scheme 2 (Scheme 3).

Scheme 3 Reagents and conditions: i, $(\mathrm{PCy})_{3} \mathrm{Ru}(\mathrm{Cl})_{2}=\mathrm{CHPh} 2.5 \mathrm{~mol} \%$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 99 \%$; ii, DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; iii, propane-1,3dithiol, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA \mathrm{MS},-15^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}, 52-94 \%$ (for two steps); iv, see Scheme 2 (steps iii, iv (R=H), v), 62-64\% (for three steps)

Substrate 9 was prepared from alcohol 2a by oxidation and Wittig reaction with 1-(butyrolactonylidene)triphenylphosphorane. ${ }^{12}$ Intermediate $\mathbf{8}$ was obtained as a $4: 1$ mixture of E and Z-isomers which were separated by chromatography. Removal of the dithioacetal protection then gave substrate 9 in excellent yield (Scheme 4).

Scheme 4 Reagents and conditions: i, py $\cdot \mathrm{SO}_{3}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, (1-butyrolactonylidene)triphenylphosphorane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, ~ \mathrm{rt}, ~ 85 \%$ (for two steps); iii, CaCO_{3}, MeI , $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 6{ }^{\circ} \mathrm{C}, 99^{\circ} \%$.

In order to assess the feasibility of using other radical acceptors in the cyclisation, vinyl sulfone substrate $\mathbf{1 1}$ was prepared from alcohol 2a. Oxidation followed by a stereoselective

Wittig-Horner reaction with α-phosphorylated- α-lithio methyl phenyl sulfone gave 10, which upon subsequent deprotection gave 11 in high yield (Scheme 5). ${ }^{13}$

Scheme 5 Reagents and conditions: i, py $\cdot \mathrm{SO}_{3}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 72%; ii, $\mathrm{Bu}^{n} \mathrm{Li}, \mathrm{MeSO}_{2} \mathrm{Ph},(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ then $-78^{\circ} \mathrm{C}-\mathrm{rt}$, 69%; iii, CaCO_{3}, MeI, MeCN, $\mathrm{H}_{2} \mathrm{O}, 98 \%$.

Enantiomerically pure aldehyde substrates 13 and 14 were prepared from aldehyde $\mathbf{1 2}$ by Wittig and Wittig-Horner reactions as outlined previously. Aldehyde $\mathbf{1 2}$ was prepared from (R)-(-)-pantolactone by adaptation of a literature route (Scheme 6). ${ }^{7}$

Scheme 6 Reagents and conditions: i, $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 65%; ii, CaCO_{3}, MeI, $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 95 \%$; iii, $\mathrm{Bu}^{n} \mathrm{Li}, \mathrm{MeSO}_{2} \mathrm{Ph}$, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ then $-78^{\circ} \mathrm{C}-\mathrm{rt}, 79 \%$; iv, CaCO_{3}, MeI, $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 95 \%$.

Cyclisation reactions

In the only previous example of a cyclisation of this kind, the substrate was treated with samarium(II) iodide using an excess of HMPA as cosolvent. ${ }^{7}$ We wished to move away from the use of HMPA due to its toxicity and also due to the harshness of the samarium(II) iodide-HMPA reagent system. We therefore chose to investigate the use of alcohol cosolvents in the reaction.

After extensive studies, optimal conditions for almost all cyclisations were found to involve the addition of the substrate to a solution of samarium(II) iodide (inverse addition) in THF, in the presence of excess MeOH (ratio of THF to MeOH , $4: 1$) as cosolvent. The MeOH serves not only as a proton source but also appears to promote cyclisation by increasing the reduction potential of samarium(II) iodide, a phenomenon which has been suggested, ${ }^{14}$ but has since received little attention. Cyclisations carried out using EtOH or $\mathrm{Bu}^{t} \mathrm{OH}$ as cosolvent were found to be considerably slower, and were only successful using the inverse mode of addition. Results from the cyclisation reactions are shown in Table 1.

In all cases, anti-cyclobutanol products were obtained with no trace of the corresponding syn-products. The anti-selectivity in the cyclisations was initially confirmed by NOE studies on several cyclobutanol products (Fig. 1), and inferred by comparison of the ${ }^{1} \mathrm{H}$ NMR data for the remainder.

Early in our studies we observed that the presence of a quaternary centre facilitated cyclisation: ${ }^{15}$ while substrates 4aa and 4ab underwent efficient, stereoselective cyclisation, the attempted cyclisation of $\mathbf{4 b}$ simply led to the acyclic product in which both the aldehyde and double bond had been reduced (compare entries 1 and 2 with entry 4). However, substrate 4c,

Table 1 4-exo-trig Cyclisations of aldehyde substrates using samarium(II) iodide
Entry Substrate

See Experimental section for reaction conditions. ${ }^{a} 4: 1$ mixture of diastereoisomers. ${ }^{b} \mathrm{CH}_{3} \mathrm{OD}$ used as cosolvent. ${ }^{c}$ Ethyl 6-hydroxy-5methylhexanoate was the major product (31%). ${ }^{d}$ HMPA added. ${ }^{e}(E)$-2,2-Dimethyl-5-phenylsulfonylpent-4-enol was the major product (35%). ${ }^{f} C f$. ref. 7. ${ }^{g}$ (E)-3,3-Dimethyl-5-phenylsulfonylpent-4-enal (26%) was also obtained.

Fig. 1 NOE Studies on selected cyclobutanol products.
where a methyl group from 4aa has been replaced by a benzyloxy group, was found to cyclise efficiently and with good diastereoselectivity to give the anti,anti-cyclobutanol as the major product (entry 5). This illustrates that dialkyl substitution is not the only means of promoting cyclisation.

Diallyl substrate 7a underwent reaction to give the expected cyclobutanol product $\mathbf{1 5}$ resulting from cyclisation onto the electron-deficient olefin (entry 6). Similarly, related substrate 7b underwent smooth spirocyclisation to generate the spiro[3.4]octene skeleton in cyclobutanol 16 (entry 7). The conversion of $\mathbf{1 5}$ to $\mathbf{1 6}$ could readily be achieved by ring-closing metathesis using Grubb's catalyst (Scheme 7).

Scheme 7 Reagents and conditions: i, $(\mathrm{PCy})_{3} \mathrm{Ru}(\mathrm{Cl})_{2}=\mathrm{CHPh} 20 \mathrm{~mol} \%$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 95 \%$.

The cyclisation of lactone 9 proceeded as expected (entry 8), while enantiomerically pure substrates $\mathbf{1 3}$ and $\mathbf{1 4}$ cyclised under our mild conditions to give anti,anti-cyclobutanol products selectively and in good yield (entries 10 and 11).

In general, vinyl sulfone substrates were found to cyclise less efficiently than the corresponding unsaturated esters and as a result gave rise to acyclic by-products (entries 9 and 11): the attempted cyclisation of substrate 11 gave (E)-2,2-dimethyl-5-phenylsulfonylpent-4-enol as the major product presumably by competitive reduction of the intermediate ketyl-radical anion and protonation. In the cyclisation of $\mathbf{1 4}$, further evidence for a slow cyclisation step is seen as reduction and elimination of the α-benzyloxy group competes to some extent with the 4-exo-trig cyclisation.

Stereochemistry α - to the ester in the 4-exo-trig cyclisation

When the cyclisation of $\mathbf{4 a b}$ was carried out in MeOD (entry 3), complete deuterium incorporation was observed. This clearly illustrates that protonation rather than hydrogen atom capture terminates the reaction. This agrees with the accepted two electron mechanism for ketyl-olefin cyclisation reactions with samarium(II) iodide ${ }^{16}$ although it does not rule out an anionic mechanism. In the cyclisation of $\mathbf{4 a b}$ (and 9) protonation of the intermediate samarium(III) enolate generates a third chiral centre. With MeOH as the cosolvent, we found that selectivities at this centre range from 4.5-3:1.

Little is known about the stereochemistry of processes in which prochiral enolates, generated by radical addition to an olefin, followed by further reduction, react with electrophiles.

Recently, an analogous stereochemical issue involving a 5-exo-trig ketyl-olefin cyclisation mediated by samarium(iI) iodide was discussed and selectivities slightly lower than our own were observed. ${ }^{17}$ In a vanadium(II)-mediated ketyl-olefin cyclisation, similar selectivities were again observed but not

Fig. 2 Molecular drawing of $\mathbf{1 8}$ showing the atom numbering and 50% probability ellipsoids for non-hydrogen atoms.
discussed. ${ }^{18}$ The intramolecular addition of alkyl radicals to $\alpha-$ substituted- α, β-unsaturated esters mediated by zinc metal or cobalt complexes has also been studied. ${ }^{19}$ This study concluded that the 1,2 -asymmetric induction in enolate protonation was comparable to that observed for hydrogen atom capture in the same system. It was also observed that the stereoselectivity of protonation could be influenced to a small degree by the addition of amines. ${ }^{19}$

In the cyclisation of $\mathbf{4 a b}$, we observed that the stereochemistry at the centre α - to the ester in the product cyclobutanols was highly dependent on the alcohol employed as the cosolvent in the cyclisation. In order to rationalise the observed stereoselectivity, we sought to determine the stereochemistry of diastereoisomer 17a, the major diastereoisomer from the cyclisation in MeOH. Unfortunately, both the 3-nitrobenzoyl, and the 3,5 -dinitrobenzoyl esters of $\mathbf{1 7 a}$ were non-crystalline. However, reduction of $\mathbf{1 7 a}$ gave diol 18, and subsequent sublimation of the low-melting solid gave crystals suitable for low temperature X-ray crystallographic analysis (Scheme 8, Fig. 2 and Fig. 3).

Scheme 8 Reagents and conditions: i, SmI_{2}, THF, MeOR, $0^{\circ} \mathrm{C}, 66 \%$; ii, LiAlH_{4}, THF, $0^{\circ} \mathrm{C}, 65 \%$.

The cyclisation of $\mathbf{4 a b}$ using a variety of cosolvents under otherwise identical conditions was then carried out and the stereoselectivity α - to the ester determined (Table 2). The use of water as an additive gave the highest selectivities under these specific conditions, and the fastest reaction, as indicated by the time taken for the samarium(II) iodide solution to decolourise. Unfortunately, additional products arising from over-reduction prior to cyclisation were formed. The use of EtOH gave a slower reaction and a $1: 1$ mixture of diastereoisomers $17 \mathbf{a}$ and $\mathbf{1 7 b}(\mathrm{R}=\mathrm{H})$ was formed. When $\mathrm{Bu}^{t} \mathrm{OH}$ was

Table 2 Cyclisation of $\mathbf{4 a b}$ in the presence of different cosolvents

Cosolvent	Additive	Time/ $\min ^{a}$	Ratio of $\mathbf{1 7 a}: \mathbf{1 7 b}$ $(\mathrm{R}=\mathrm{H})^{b}$	Isolated yield of 17a and 17b $(\mathrm{R}=\mathrm{H})(\%)$
$\mathrm{H}_{2} \mathrm{O}$		<1	$4.5: 1$	44
MeOH		5	$4: 1$	66
MeOH	HMPA^{c}	<1	$4: 1$	35
EtOH		85	$1: 1$	84
$\mathrm{Bu}^{t} \mathrm{OH}$		540	$1: 2$	53

Reaction conditions: $\mathbf{4 a b}$ in THF (0.25 M) was added to a solution of SmI_{2} (0.1 M in THF, 2 eq. and cosolvent (123 eq.) (+additive) at $0^{\circ} \mathrm{C}$. ${ }^{a}$ Time taken for SmI_{2} to decolourise. ${ }^{b}$ From crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} 12$ eq. added.

Fig. 3 (a) Packing in 18 viewed down the c axis; (b) a single molecule viewed down the c axis with the atom numbering scheme shown.
employed as a cosolvent, the reaction was extremely slow and showed a small, but reproducible, switch in selectivity in favour of $\mathbf{1 7 b}(R=H)$.
A similar switch in selectivity was also observed in the cyclisation of $\mathbf{9}$. Cyclisation of $\mathbf{9}$ in MeOH gave a $4: 1$ mixture of diastereoisomers, while in $\mathrm{Bu}^{t} \mathrm{OH}$, a 1:1.6 ratio was obtained. (Although the relative stereochemistry of the major and minor products obtained from the cyclisations of $\mathbf{9}$ have not been determined, we presume the reactions show the same sense of selectivity in a particular cosolvent as those of 4ab.)
We feel a possible explanation for the cosolvent dependency of the stereochemistry, lies in the degree of solvation about the

Fig. 4
samarium(III) centres in the key samarium(III) enolate intermediate. In Fig. 4 two possible conformations, \mathbf{A} and \mathbf{B}, of the intermediate samarium(III) enolate are shown. In the absence of strongly coordinating solvents, coordination of the lanthanide centre to both the alkoxide on the cyclobutane ring and the enolate would be expected to lock the system in conformation B. Protonation of the intermediate whilst in conformation B would lead to $\mathbf{1 7 b}(\mathrm{R}=\mathrm{H})$. In highly coordinating solvents, such as water and methanol, however, this chelation will be disrupted and conformation \mathbf{A} will predominate, due to electronic and steric factors. ${ }^{20}$ Protonation of the intermediate whilst in conformation \mathbf{A} will lead to $\mathbf{1 7 a}(\mathrm{R}=\mathrm{H})$. Hence, the reactions in EtOH and $\mathrm{Bu}^{t} \mathrm{OH}$ show a gradual swing towards enolate conformation \mathbf{B} as chelation becomes more important.

The additional observation that cyclisation of $\mathbf{4 a b}$ in the presence of only 4 equivalents of MeOH gave a low yield of $\mathbf{1 7 a}$ and $\mathbf{1 7 b}(\mathrm{R}=\mathrm{H})$ as a $1: 1$ ratio, not only supports these ideas but also shows the importance of excess alcohol for activation of samarium(II) iodide and thus, efficient reaction. In the cyclisation of 9, the intermediate samarium(III) enolate geometry is locked. As a similar cosolvent dependency is observed in this cyclisation when compared to that of $\mathbf{4 a b}$, it appears that enolate geometry is not an important factor in the variation of product stereochemistry with solvent. Epimerisation studies on the product cyclobutanols proved difficult, however, in the cyclisation of $\mathbf{4 a b}$ in MeOH , quenching after 1, 4 and 18 h gave identical diastereoisomeric mixtures suggesting epimerisation under the reaction conditions was not occurring. As shown in Table 2, attempts to break down any chelation by the addition of HMPA led to very different cyclisation conditions and thus results that were not meaningful.

Conclusions

The scope and limitations of a samarium(iI)-mediated, stereoselective approach to functionalised cyclobutanols have been established. In all cases the reaction shows complete antiselectivity and a range of functionality in the substrates is tolerated. Preliminary investigations into the factors that influence the stereochemistry at a third newly formed chiral centre lying outside the ring have been carried out. Further studies into the mechanism and stereochemistry of cyclisation, and its application in synthesis are ongoing.

Experimental

General considerations

All reactions were performed under argon or nitrogen atmospheres with anhydrous solvents unless otherwise stated. THF was distilled from sodium and benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}. Toluene was distilled from sodium wire. $\mathrm{MeOH}, \mathrm{EtOH}$ and $\mathrm{Bu}^{t} \mathrm{OH}$ were distilled from the corresponding magnesium alkoxide and stored under argon. HMPA was dried by refluxing with CaH_{2} followed by fractional distillation under reduced pressure. Samarium(II) iodide was prepared by the method of Imamoto and Ono ${ }^{21}$ with the modifi-
cation that the samarium-iodine-THF solution was heated at $60^{\circ} \mathrm{C}$ rather than at reflux.

Melting points were measured on a Kofler hot stage apparatus and are uncorrected. Optical rotations were measured on a polAAr 2000 polarimeter. $[a]_{\mathrm{D}}$ Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Bruker AM 360 or DPX 400 spectrometers with chemical shift values being reported in ppm relative to residual chloroform $\left(\delta_{\mathrm{H}}=7.27\right.$ or $\delta_{\mathrm{C}}=77.2$) as internal standard unless otherwise stated. All coupling constants (J) are reported in hertz (Hz). Infrared spectra were recorded using JASCO FT/IR 410 and Impact 400 spectrometers and mass spectra were obtained using a JEOL JMS-700 spectrometer. Microanalyses were carried out at the University of Glasgow using an Elemental Analyser MOD 1106.

Column chromatography was carried out using Fisher Matrex silica 60. Macherey-Nagel aluminium backed plates pre-coated with silica gel $60\left(\mathrm{UV}_{254}\right)$ were used for thin layer chromatography and were visualised by UV or staining with iodine or alkali KMnO_{4}.

Preparation of cyclisation substrates

3-(1,3-Dithian-2-yl)-3-methylbutan-1-ol 2a. To a stirred solution of α, α-dimethyl- γ-butyrolactone ${ }^{22} \mathbf{1 a}(3.59 \mathrm{~g}, 31.5 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added dropwise DIBAL-H (1.5 M in toluene, $29.4 \mathrm{ml}, 44.0 \mathrm{mmol}$, 1.4 eq.) and the reaction stirred for 2 h . The mixture was then added dropwise to a stirred solution of K / Na tartrate $(26.6 \mathrm{~g}, 94.3$ mmol, 3 eq.) in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$, and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the lactol $(2.55 \mathrm{~g}, 22.0 \mathrm{mmol}, 70 \%)$ as a pale yellow oil which was used without further purification: $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.90(1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{CHOH}), 4.09(1 \mathrm{H}, \mathrm{td}, J 8.4$, $3.4,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.92(1 \mathrm{H}$, apparent $\mathrm{q}, J 8.4,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.58(1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{OH}), 1.99-1.92(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.68-1.62\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

To a stirred solution of the lactol $(1.86 \mathrm{~g}, 16.0 \mathrm{mmol}, 1 \mathrm{eq}$.$) in$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ was added activated $4 \AA$ molecular sieves and propane-1,3-dithiol ($1.93 \mathrm{ml}, 19.2 \mathrm{mmol}, 1.2$ eq.) before the dropwise addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.03 \mathrm{ml}, 16.0 \mathrm{mmol}$, 1 eq.). The reaction was left for 1.5 h and then aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was added. The aqueous layer was then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{ml})$. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 30% EtOAc in hexane) yielded $2 \mathrm{a}(1.92 \mathrm{~g}, 9.28 \mathrm{mmol}$, 58%) as a clear pale yellow oil: $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3369 \mathrm{~s}(\mathrm{OH})$, $2961 \mathrm{~s}, 2930 \mathrm{~s}, 2899 \mathrm{~s}, 1465 \mathrm{~m}, 1388 \mathrm{~m}, 1367 \mathrm{~m}, 1277 \mathrm{~m}, 1055 \mathrm{~m}$, and $1026 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 3.77(2 \mathrm{H}$, apparent $\left.\mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{OH}\right), 2.91-2.89\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.09$ (1 H , dquintets, $J 14.0,3.3,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.88-1.76(1 \mathrm{H}, \mathrm{m}$, 1 H from $\left.\mathrm{CH}_{2}\right), 1.81\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, and $1.15(6 \mathrm{H}$, s, $\left.2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 60.9(\mathrm{SCHS}), 59.6\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $43.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 38.0(\mathrm{C}), 31.5\left(2 \times \mathrm{SCH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$, and $26.1\left(2 \times \mathrm{CH}_{3}\right) ; m / z($ EI mode $) 206(82 \%), 119(100), 99(19)$, 85 (14), 69 (14), and 55 (17) (Found: M^{+}, 206.0797. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OS}_{2}$ requires $M, 206.0799)$.

General oxidation-olefination procedure A

Ethyl (E)-5-(1,3-dithian-2-yl)-5-methylhex-2-enoate 3aa. To a solution of 3-(1,3-dithian-2-yl)-3-methylbutan-1-ol 2a (187 mg, $0.91 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at room temperature was added DMSO ($0.64 \mathrm{ml}, 9.00 \mathrm{mmol}, 10 \mathrm{eq}$.$) and triethylamine$ $(0.61 \mathrm{ml}, 5.94 \mathrm{mmol}, 6.6$ eq. $)$ and the resulting solution stirred at room temperature for 5 min before cooling to $0^{\circ} \mathrm{C}$. Pyridinesulfur trioxide complex ($544 \mathrm{mg}, 3.42 \mathrm{mmol}, 3.8 \mathrm{eq}$.) was then
added and the solution allowed to warm to room temperature. After 1 h , (ethoxycarbonylmethylene)triphenylphosphorane ($627 \mathrm{mg}, 1.80 \mathrm{mmol}, 2$ eq.) was added and the reaction mixture stirred for a further 16 h at room temperature. Aqueous saturated $\mathrm{NaHCO}_{3}(6 \mathrm{ml})$ was then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 20% EtOAc in hexane) gave 3aa $\left(187 \mathrm{mg}, 0.68 \mathrm{mmol}, 76 \%\right.$) as a colourless oil: $v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ $2978 \mathrm{~m}, 2898 \mathrm{~m}, 1720 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1653s ($\mathrm{C}=\mathrm{C}$), 1367m, and 1175 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.97\left(1 \mathrm{H}, \mathrm{dt}, J 15.6,7.9, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $5.91\left(1 \mathrm{H}, \mathrm{dt}, J 15.6,1.2, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.20(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.98(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 2.90-2.87\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~S}\right)$, $2.39\left(2 \mathrm{H}, \mathrm{dd}, J 7.9,1.2, \mathrm{C} H_{2} \mathrm{CH}=\right), 2.11-2.04(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.87-1.77\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.29(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.12(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $167.0(\mathrm{C}=\mathrm{O}), 144.9\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 124.4\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $60.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.2(\mathrm{CH}), 42.8\left(\mathrm{CH}_{2} \mathrm{C}=\right), 39.0(\mathrm{C}), 31.3$ $\left(2 \times \mathrm{SCH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.3(2 \times \mathrm{Me})$, and $14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (EI mode) 274 (14\%), 229 (6), 161 (12), 160 (7), 119 (100), and 85 (4) (Found: $\mathrm{M}^{+}, 274.1059 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires M, 274.1061) (Found: C, 56.72; H, 8.19. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, 56.89; H, 8.08\%).

General deprotection procedure B

Ethyl (\boldsymbol{E})-5,5-dimethyl-6-oxohex-2-enoate 4aa. To a solution of 3aa ($160 \mathrm{mg}, 0.58 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{MeCN}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{ml})$ at room temperature was added $\mathrm{CaCO}_{3}(174 \mathrm{mg}$, $1.74 \mathrm{mmol}, 3$ eq.) and iodomethane ($0.36 \mathrm{ml}, 5.80 \mathrm{mmol}$, 10 eq.). The resulting solution was then heated at $60^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was then passed down a short silica gel column (eluting with 20% EtOAc in hexane). Concentration in vacuo gave aldehyde 4 aa ($102 \mathrm{mg}, 0.55 \mathrm{mmol}, 95 \%$) as a pale yellow oil which was used without further purification: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2980 \mathrm{~s}, 2719 \mathrm{~m}, 1716 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1655 \mathrm{~s}, 1270 \mathrm{~s}$, 1179 s , and $1044 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $6.85\left(1 \mathrm{H}, \mathrm{dt}, J 15.6,7.8, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.87(1 \mathrm{H}, \mathrm{dt}, J 15.6$, $\left.1.3, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36(2 \mathrm{H}, \mathrm{dd}$, $\left.J 7.8,1.3, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.11(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.6(\mathrm{CHO}), 166.0\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $143.4\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 124.8\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $45.8(\mathrm{C}), 39.3\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 21.4(2 \times \mathrm{Me})$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (CI mode, isobutane) $185(100 \%)$, 156 (4), and 139 (30) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 185.1180. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}$ requires $M, 185.1178$).

Ethyl (E)-2,5-dimethyl-5-(1,3-dithian-2-yl)hex-2-enoate 3ab. As for general procedure A. 3-(1,3-Dithian-2-yl)-3-methyl-butan-1-ol 2a ($500 \mathrm{mg}, 2.42 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation, reaction with (1-ethoxycarbonylethylidene)triphenylphosphorane for 14 h , and purification by column chromatography (eluting with 10% EtOAc in hexane), gave 3ab ($684 \mathrm{mg}, 2.37 \mathrm{mmol}$, 98%) as a clear colourless oil: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2964 \mathrm{~s}, 2900 \mathrm{~s}$, $2828 \mathrm{~m}, 1712 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1647 \mathrm{~s}(\mathrm{C}=\mathrm{C}), 1465 \mathrm{~s}, 1422 \mathrm{~m}, 1388 \mathrm{~s}, 1367 \mathrm{~s}$, $1261 \mathrm{~s}, 1177 \mathrm{~m}$, and $1101 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.84(1 \mathrm{H}, \mathrm{t}$, $\left.J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.03(1 \mathrm{H}$, $\mathrm{s}, \mathrm{SCHS}), 2.91-2.88\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.38(2 \mathrm{H}, \mathrm{d}, J 7.8$, $\mathrm{C} \mathrm{H}_{2} \mathrm{CH}=$), $2.09\left(1 \mathrm{H}\right.$, dquint., $J 14.1,3.3,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.87$ $\left(3 \mathrm{H}, \mathrm{s},=\mathrm{CCH}_{3}\right), 1.87-1.76\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.31(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.13\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 168.3(\mathrm{C}=\mathrm{O}), 138.0(\mathrm{CH}=), 130.3\left(=\mathrm{CCH}_{3}\right), 60.8$ (SCHS), $60.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.7(\mathrm{C}), 39.1\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 31.5$ $\left(2 \times \mathrm{SCH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.5\left(2 \times \mathrm{CH}_{3}\right), 14.5\left(\mathrm{CCH}_{3}\right)$, and 12.9 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; m / z$ (EI mode) $288(26 \%), 243$ (8), 162 (17), 123 (12), 119 (100), 99 (5), and 55 (5) (Found: M^{+}, 288.1220. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires M, 288.1218).

Ethyl (E)-2,5,5-trimethyl-6-oxohex-2-enoate 4ab. As for general procedure B. Ethyl (E)-2,5-dimethyl-5-(1,3-dithian-

2-yl)hex-2-enoate 3ab ($724 \mathrm{mg}, 2.51 \mathrm{mmol}, 1$ eq.) gave aldehyde 4ab ($490 \mathrm{mg}, 2.46 \mathrm{mmol}, 98 \%$) as a clear colourless oil which was used without further purification: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2976 \mathrm{~s}$, 2935s, 2809m, 2705m, 1716s (C=O), 1650s (C=C), 1390s, 1367s, $1255 \mathrm{~s}, 1109 \mathrm{~s}$, and $1082 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.51(1 \mathrm{H}$, s, CHO), $6.70\left(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.19(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.35\left(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\right)$, $1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.11\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.3(\mathrm{C}=\mathrm{O}), 167.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 136.3(\mathrm{CH}=), 130.7$ $(\mathrm{C}=), 60.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.5(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right), 21.6\left(2 \times \mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $12.8\left(=\mathrm{CCH}_{3}\right) ; m / z\left(\mathrm{CI}\right.$ mode, $\left.\mathrm{NH}_{3}\right) 216(100 \%)$, 199 (8), 134 (7), 96 (6), and 79 (4) (Found: ($\mathrm{M}+\mathrm{H})^{+}$, 199.1332. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}$ requires $M, 199.1329$).

3-(1,3-Dithian-2-yl)butan-1-ol 2b. To a stirred solution of α-methyl- γ-butyrolactone ${ }^{23} \mathbf{1 b}(2.99 \mathrm{~g}, 29.9 \mathrm{mmol}, 1 \mathrm{eq}$. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H (1.5 M in toluene, $23.9 \mathrm{ml}, 35.9 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and the reaction left for 1 h . The mixture was then added dropwise to a stirred solution of K / Na tartrate ($25.8 \mathrm{~g}, 89.7 \mathrm{mmol}, 3$ eq.) in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$. The aqueous layer was then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$ and the combined organic extracts dried $\left(\mathrm{NaSO}_{4}\right)$. Concentration in vacuo gave the lactol ($2.82 \mathrm{~g}, 27.61 \mathrm{mmol}, 92 \%$) as a pale yellow oil ($2: 1$ mixture of diastereoisomers) which was used without further purification: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.29(1 \mathrm{H}, \mathrm{t}, J 3.6, \mathrm{CHOH}$ of one isomer $)$, $5.13(1 \mathrm{H}, \mathrm{dd}, J 3.3,1.3, \mathrm{CHOH}$ of one isomer), 4.14-4.04 $\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\mathrm{CH}_{2} \mathrm{O}$ for each isomer), $4.01-3.95(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{O}$ for one isomer), $3.87-3.81\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\mathrm{CH}_{2} \mathrm{O}$ for one isomer), $2.83(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{OH}$ of one isomer), 2.64 $(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{OH}$ of one isomer), 2.29-2.22 ($2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from CH_{2} for both isomers), $2.18-2.12\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from CH_{2} for one isomer) and $2.05-1.97\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from CH_{2} for one isomer), $1.81-1.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right.$ of one isomer), $1.58-1.52(1 \mathrm{H}, \mathrm{m}$, CHCH_{3} of one isomer), $1.12\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{3} \mathrm{CH}\right.$ of one isomer), and $1.05\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}\right.$ of one isomer).
To a stirred solution of the lactol ($2.82 \mathrm{~g}, 27.6 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added propane-1,3-dithiol $(3.3 \mathrm{ml}$, $33.1 \mathrm{mmol}, 1.2$ eq.) and $4 \AA$ molecular sieves. Trifluoromethanesulfonic acid ($0.98 \mathrm{ml}, 11.0 \mathrm{mmol}, 0.4 \mathrm{eq}$.) was then added and the reaction mixture allowed to warm to room temperature and stirred for 19 h . Aqueous saturated NaHCO_{3} (1 ml) was added and the aqueous layer separated and extracted with EtOAc $(4 \times 20 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (eluting with 20% EtOAc in hexane) to give alcohol $\mathbf{2 b}(3.32 \mathrm{~g}, 17.28 \mathrm{mmol}, 63 \%)$ as a pale yellow oil: $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3397 \mathrm{br} \mathrm{s}(\mathrm{OH}), 2930 \mathrm{~s}, 1276 \mathrm{~s}$, $1185 \mathrm{~s}, 1053 \mathrm{~s}, 1011 \mathrm{~s}$, and $907 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.17(1 \mathrm{H}$, d, J4.1, SCHS), 3.77-3.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $2.95-2.82(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{SCH}_{2}\right), 2.14-2.06\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from CH_{2} and $\left.\mathrm{CHCH} \mathrm{H}_{3}\right)$, $1.95-1.80\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\mathrm{CH}_{2} \mathrm{CH}$ and 1 H from $\left.\mathrm{CH}_{2}\right), 1.64-$ $1.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.34(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, and $1.12(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 60.8\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 55.3 (SCHS), $36.9\left(\mathrm{CHCH}_{2}\right), 35.3\left(\mathrm{CHCH}_{3}\right), 31.0\left(\mathrm{SCH}_{2}\right), 30.8\left(\mathrm{SCH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right)$, and $17.1\left(\mathrm{CH}_{3}\right) ; ~ m / z$ (EI mode) $192(26 \%), 119(100), 106$ (4), 86 (10), 75 (6), and 74 (4) (Found: M^{+}, 192.0643. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{OS}_{2}$ requires $M, 192.0639$).

Ethyl (E)-5-(1,3-dithian-2-yl)hex-2-enoate 3b. As for general procedure A. 3-(1,3-Dithian-2-yl)butan-1-ol 2b (500 mg , $2.60 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation and reaction with (ethoxycarbonylmethylene)triphenylphosphorane for 11 h , and purification by column chromatography (eluting with 10% EtOAc in hexane), gave $\mathbf{3 b}(482 \mathrm{mg}, 1.85 \mathrm{mmol}, 71 \%)$ as a clear, yellow oil: $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2978 \mathrm{~m}, 2930 \mathrm{~m}, 2898 \mathrm{~m}, 1717 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1653 \mathrm{~s}$ (C=C), $1367 \mathrm{~m}, 1175 \mathrm{~s}, 1042 \mathrm{~s}$, and $983 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $6.90\left(1 \mathrm{H}, \mathrm{dt}, J 15.5,7.5, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.87(1 \mathrm{H}, \mathrm{d}, J 15.5$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.09(1 \mathrm{H}, \mathrm{d}$, $J 4.6, \mathrm{SCHS}), 2.94-2.82\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.58-2.51(1 \mathrm{H}$,
$\mathrm{dt}, J 14.4,7.5,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.27-2.19(1 \mathrm{H}, \mathrm{dt}, J 14.4$, $7.5,1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{CH}=$), 2.15-2.02 $\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from CH_{2} and $\left.\mathrm{CHCH}_{3}\right), 1.86-1.80\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.29(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.10\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6(\mathrm{C}=\mathrm{O}), 146.8\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 123.5$ $\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 54.5(\mathrm{SCHS}), 38.1\left(\mathrm{CHCH}_{3}\right)$, $36.8\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 31.1\left(\mathrm{SCH}_{2}\right), 30.8\left(\mathrm{SCH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 17.2$ $\left(\mathrm{CHCH}_{3}\right)$, and $14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (EI mode) $260(14 \%), 215$ (7), 147 (36), 119 (100), 114 (12), and 73 (10) (Found: M^{+}, 260.0905. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~S}_{2} \mathrm{O}_{2}$ requires $M, 260.0900$).

Ethyl (E)-5-methyl-6-oxohex-2-enoate 4b. As for general procedure B. Ethyl (E)-5-(1,3-dithian-2-yl)hex-2-enoate 3b (458 $\mathrm{mg}, 1.76 \mathrm{mmol}, 1$ eq.) gave the aldehyde $\mathbf{4 b}(276 \mathrm{mg}, 1.62 \mathrm{mmol}$, 92%) as a pale red oil which was used without further purification: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2980 \mathrm{~s}$, 2936s, 2816m, 2719m, 1716s $(\mathrm{C}=\mathrm{O}), 1655 \mathrm{~s}(\mathrm{C}=\mathrm{C}), 1270 \mathrm{~s}, 1179 \mathrm{~s}$, and $1044 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.67(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{CHO}), 6.90(1 \mathrm{H}, \mathrm{dt}, J 15.6,7.0$, $\left.\mathrm{C} H=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.89\left(1 \mathrm{H}, \mathrm{dt}, J 15.6,1.5, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.20$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.73-2.59\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right)$, 2.59-2.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}$), 2.30-2.22 ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH} \mathrm{C}_{2} \mathrm{CH}=\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.17(3 \mathrm{H}, \mathrm{d}, J 7.2$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.4(\mathrm{CHO}), 166.3(\mathrm{C}=\mathrm{O})$, $145.2\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 123.9(\mathrm{CH}=\mathrm{CHCO} 2 \mathrm{Et}), 60.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 45.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 33.0\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $13.4\left(\mathrm{CH}_{3} \mathrm{CH}\right)$; m / z (CI mode, isobutane) 171 (100%), 169 (4), 125 (22), 111 (4), 95 (6), and 85 (19) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 171.1021. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}$ requires $M, 171.1017$).
α-Benzyloxy- α-methyl- $\boldsymbol{\gamma}$-butyrolactone ${ }^{24} 1 \mathrm{c}$. To a solution of diisopropylamine ($3.06 \mathrm{ml}, 21.8 \mathrm{mmol}, 1.4 \mathrm{eq}$.) in THF (20 ml) at $-78{ }^{\circ} \mathrm{C}$ was added n-butyllithium (1.6 M in hexanes, 13.7 ml , $21.8 \mathrm{mmol}, 1.4$ eq.) and the resulting solution stirred at $-78^{\circ} \mathrm{C}$ for 50 min . α-Benzyloxy- γ-butyrolactone $(3.00 \mathrm{~g}, 15.6 \mathrm{mmol}$, 1 eq.$)$ in THF (20 ml) was then added dropwise over 10 min . After a further 50 min at $-78^{\circ} \mathrm{C}$, iodomethane $(4.08 \mathrm{ml}, 65.5$ mmol, 3 eq.) was added dropwise and the reaction mixture allowed to warm to $-20^{\circ} \mathrm{C}$. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 30% EtOAc in hexane) gave α-benzyloxy-α-methyl- γ-butyrolactone 1c ($2.20 \mathrm{~g}, 10.6 \mathrm{mmol}, 68 \%$): $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2978 \mathrm{~m}, 2908 \mathrm{~m}, 2867 \mathrm{~m}, 1780 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1716 \mathrm{~m}$, $1492 \mathrm{~m}, 1451 \mathrm{~m}, 1381 \mathrm{~s}, 1222 \mathrm{~s}$, and 1193 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.39-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.62\left(2 \mathrm{H}\right.$, apparent s, $\left.\mathrm{PhCH}_{2}\right), 4.44$ $\left(1 \mathrm{H}, \mathrm{dt}, J 8.9,7.5,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.28(1 \mathrm{H}, \mathrm{td}, J 8.9,4.3,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.57-2.50\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 2.26-2.19(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$, and $1.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $175.8(\mathrm{C}=\mathrm{O})$, $137.8(\mathrm{ArC}), 128.4(2 \times \mathrm{ArCH}), 127.7(\mathrm{ArCH})$, $127.6(2 \times \mathrm{ArCH}), 76.7(\mathrm{C}), 66.6\left(\mathrm{PhCH}_{2}\right), 65.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 36.3$ $\left(\mathrm{CH}_{2}\right)$, and $19.6\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) $207(100 \%)$, 181 (8), 131 (3), 117 (5), and 91 (36) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 207.1021. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}$ requires M, 207.1021).

3-(Benzyloxy)-3-(1,3-dithian-2-yl)butan-1-ol 2c. To a solution of α-benzyloxy- α-methyl- γ-butyrolactone 1c $(1.60 \mathrm{~g}, 7.72$ mmol, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H (1.5 M in toluene, $6.20 \mathrm{ml}, 9.27 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and the solution stirred for 1 h . The reaction mixture was then poured into a solution of K / Na tartrate ($5.84 \mathrm{~g}, 23.2 \mathrm{~mol}, 3 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The resulting solution was stirred for 2 h and the aqueous layer then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the corresponding lactol ($1.29 \mathrm{~g}, 6.17 \mathrm{mmol}, 80 \%$) as a colourless oil which was used without further purification: (mixture of two diastereoisomers): $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.35(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}$ for both isomers), $5.32(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{CHOH}$ of one isomer),
$5.09(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CHOH}$ of other isomer), $4.77(1 \mathrm{H}, \mathrm{d}, J 7.8$, OH of one isomer), $4.60(\mathrm{AB}$ system, $1 \mathrm{H}, \mathrm{d}, J 11.0,1 \mathrm{H}$ from PhCH of one isomer), 4.54 (AB system, $1 \mathrm{H}, \mathrm{d}, J 11.0,1 \mathrm{H}$ from PhCH 2 of one isomer), $4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right.$ of other isomer), 4.21-4.09 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ from one isomer and 1 H from $\mathrm{CH}_{2} \mathrm{O}$ of the other isomer), 3.84-3.79 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.80(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{OH}$ of one isomer), $2.38-2.32(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 2.28-2.23\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 2.12-2.02$ $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 2.00-1.93\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, $1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of one isomer), and $1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of other isomer).
To a solution of the lactol $(1.29 \mathrm{~g}, 6.17 \mathrm{mmol}, 1 \mathrm{eq}$. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added propane-1,3-dithiol $(0.74 \mathrm{ml}, 7.40$ mmol, 1.2 eq.) and powdered $4 \AA$ molecular sieves, and the solution cooled to $-15^{\circ} \mathrm{C}$. Trifluoromethanesulfonic acid $(0.22 \mathrm{ml}, 2.47 \mathrm{mmol}, 0.4 \mathrm{eq}$.) was then added dropwise and the resulting solution allowed to warm gradually to room temperature and stirred for 48 h . Aqueous saturated NaHCO_{3} $(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic layers were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 20% EtOAc in hexane) gave 2c ($789 \mathrm{mg}, 2.64$ $\mathrm{mmol}, 43 \%$) as a colourless oil: $v_{\text {max }}$ (soln. in CHCl_{3}) $/ \mathrm{cm}^{-1}$ $3513 \mathrm{~m}, 3009 \mathrm{~m}, 2903 \mathrm{~m}, 1525 \mathrm{~m}, 1419 \mathrm{~m}$, and $1100 \mathrm{~m} ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.40-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.65(1 \mathrm{H}, \mathrm{d}, J 10.3,1 \mathrm{H}$ from $\left.\mathrm{PhCH}_{2}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J 10.3,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.52(1 \mathrm{H}$, s, SCHS), $3.94-3.87\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.80-3.75(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{O}$), $2.94-2.89\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S} \times 2\right), 2.33-2.26$ ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $2.13(1 \mathrm{H}, \mathrm{dt}, J 14.0,3.4,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.97-1.92\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.92-1.80$ $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, and $1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 138.1(\mathrm{ArC}), 128.4(2 \times \mathrm{ArCH}), 127.6(2 \times \mathrm{ArCH})$, $127.5(\mathrm{ArCH}), 80.3(\mathrm{C}), 64.1\left(\mathrm{PhCH}_{2}\right), 59.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.5$ (SCHS), $38.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 31.2\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $31.1\left(\mathrm{CH}_{2} \mathrm{~S}\right), 26.0$ $\left(\mathrm{CH}_{2}\right)$, and $21.6\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}$ mode, isobutane) $299(11 \%)$, 281 (6), 191 (62), 161 (26), 119 (12), and 85 (100) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 299.1138 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\left.M, 299.1139\right)$.

Ethyl (E)-5-(benzyloxy)-5-(1,3-dithian-2-yl)hex-2-enoate 3c. As for general procedure A. 3-(Benzyloxy)-3-(1,3-dithian-2-yl)butan-1-ol $2 \mathbf{c}$ ($371 \mathrm{mg}, 1.31 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation and reaction with (ethoxycarbonylmethylene)triphenylphosphorane for 22 h , and purification by column chromatography (eluting with 20% EtOAc in hexane), gave 3 c ($359 \mathrm{mg}, 0.98 \mathrm{mmol}, 75 \%$) as a colourless oil: $v_{\text {max }}$ (soln. in CHCl_{3}) $\mathrm{cm}^{-1} 2987 \mathrm{~s}, 2892 \mathrm{~s}$, 1699s (C=O), 1654s, $1453 \mathrm{~m}, 1374 \mathrm{~s}, 1273 \mathrm{~s}$, and $1178 \mathrm{~s} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 7.06(1 \mathrm{H}, \mathrm{dt}, J 15.5$, $\left.8.0, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.95(1 \mathrm{H}, \mathrm{d}, J 15.5,=\mathrm{CHCO} 2 \mathrm{Et}), 4.60(\mathrm{AB}$ system, $1 \mathrm{H}, \mathrm{d}, J 10.8,1 \mathrm{H}$ from PhCH$\left.)_{2}\right), 4.57$ (AB system, 1 H , d, $J 10.8,1 \mathrm{H}$ from PhCH_{2}), 4.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}$), $4.21(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.96-2.78\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S} \times 2\right), 2.81(1 \mathrm{H}, \mathrm{dd}$, $J 14.7,8.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.71(1 \mathrm{H}, \mathrm{dd}, J 14.7,8.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.11\left(1 \mathrm{H}, \mathrm{dt}, J 11.0,4.0,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.92-$ $1.81\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.28(3 \mathrm{H}$, t , J 7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.2(\mathrm{C}=\mathrm{O}), 143.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 138.5(\mathrm{ArC}), 128.2(2 \times \mathrm{ArCH}), 127.4(2 \times \mathrm{ArCH})$, $127.3(\mathrm{ArCH}), 124.5(=\mathrm{CHCO} 2 \mathrm{Et}), 79.0(\mathrm{C}), 64.1\left(\mathrm{PhCH}_{2}\right)$, $60.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 57.1 (SCHS), $39.6\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 31.0\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $30.9\left(\mathrm{CH}_{2} \mathrm{~S}\right), 25.9\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right)$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (CI mode, isobutane) 367 (32\%), 309 (9), 259 (100), 153 (4), 107 (6), and 91 (10) (Found: ($\mathrm{M}+\mathrm{H})^{+}$, 367.1401. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $M, 367.1402$) (Found: C, 62.12; H, 7.04. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, $62.26 ; \mathrm{H}, 7.15 \%$).

Ethyl (E)-5-(benzyloxy)-5-methyl-6-oxohex-2-enoate 4c. As for general procedure B. Ethyl (E)-5-(benzyloxy)-5-(1,3-dithian-2-yl)hex-2-enoate 3 c ($171 \mathrm{mg}, 0.49 \mathrm{mmol}, 1 \mathrm{eq}$.) gave aldehyde $4 \mathrm{c}(124 \mathrm{mg}, 0.47 \mathrm{mmol}, 96 \%)$ as a pale yellow oil which was used without further purification: $v_{\max }$ (soln. in
$\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3019 \mathrm{~s}, 2984 \mathrm{~m}, 1735 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1716 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1657 \mathrm{~m}$, 1421 m , and $1269 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $7.37-7.30(5 \mathrm{H}, \mathrm{m}, ~ \mathrm{ArH} \times 5), 6.96(1 \mathrm{H}, \mathrm{dt}, ~ J 15.6,7.6$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 5.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6,=\mathrm{CHCO} 2 \mathrm{Et}), 4.51(2 \mathrm{H}$, apparent s, PhCH_{2}), $4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, J 15.0$, $7.6,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J 15.0,7.6,1 \mathrm{H}$ from $\mathrm{CH} 2 \mathrm{CH}=), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.6(\mathrm{CHO}), 165.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 141.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 137.7(\mathrm{ArC}), 128.5(2 \times \mathrm{ArCH}), 127.9(2 \times \mathrm{ArCH})$, $127.5(\mathrm{ArCH}), 125.3\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 82.0(\mathrm{C}), 66.6\left(\mathrm{PhCH}_{2}\right), 60.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $18.7\left(\mathrm{CH}_{3}\right)$, and $14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; m / z (CI mode, isobutane) 277 (100%), 247 (6), 187 (5), 169 (32), 157 (6), and 91 (26) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 277.1442. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}$ requires $M, 277.1440$).

3,3-Diallyl-2,3,4,5-tetrahydrofuran-2-one ${ }^{25} \mathbf{5 a}$. To a solution of diisopropylamine ($8.40 \mathrm{ml}, 60.0 \mathrm{mmol}, 1.2$ eq.) in THF (70 $\mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added n-butyllithium (1.55 M in hexanes, $38.7 \mathrm{ml}, 60.0 \mathrm{mmol}, 1.2$ eq.) dropwise. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min before the addition of γ-butyrolactone $(3.84 \mathrm{ml}, 50.0 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (50 ml). The resulting solution was then stirred for 1 h . Neat allyl bromide ($13.0 \mathrm{ml}, 150$ $\mathrm{mmol}, 3$ eq.) was added and the solution allowed to warm gradually to $-20^{\circ} \mathrm{C}$ over 18 h . Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(6 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with $\operatorname{EtOAc}(2 \times 25 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 40% EtOAc in hexane) gave 3 -allyl-2,3,4,5-tetra-hydrofuran-2-one ($5.05 \mathrm{~g}, 40.0 \mathrm{mmol}, 80 \%$) as a pale yellow oil: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.88-5.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 5.20-5.11(2 \mathrm{H}$, $\left.\mathrm{m},=\mathrm{CH}_{2}\right), 4.38-4.27\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 4.24-4.19 $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 2.69-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.42-2.34$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.33-2.25\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, and $2.07-1.96$ ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from CH_{2}).
To a solution of diisopropylamine $(6.70 \mathrm{ml}, 48.0 \mathrm{mmol}$, 1.2 eq.) in THF (50 ml) at $-78^{\circ} \mathrm{C}$ was added n-butyllithium (1.55 M in hexanes, $31.0 \mathrm{ml}, 48.0 \mathrm{mmol}, 1.2$ eq.) dropwise. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before the addition of 3-allyl-2,3,4,5-tetrahydrofuran-2-one ($5.05 \mathrm{~g}, 40.0 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (50 ml). The resulting solution was then stirred for 1 h . Neat allyl bromide ($10.4 \mathrm{ml}, 120 \mathrm{mmol}, 3$ eq.) was added dropwise and the solution allowed to warm gradually to $-20^{\circ} \mathrm{C}$ over 3 h . Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with EtOAc $(2 \times 25 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 10% EtOAc in hexane) gave 3,3-diallyl-2,3,4,5-tetrahydrofuran-2one $5 \mathrm{a}\left(5.05 \mathrm{~g}, 30.4 \mathrm{mmol}, 76 \%\right.$) as a colourless oil: $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3078 \mathrm{~s}, 2978 \mathrm{~s}, 1768 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1639 \mathrm{~m}, 1439 \mathrm{~m}, 1381 \mathrm{~m}, 1186 \mathrm{~s}$, and $1028 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.82-5.71(2 \mathrm{H}, \mathrm{m}, 2 \times-\mathrm{CH}=)$, 5.19-5.14 (4H, m, $2 \times \mathrm{CH}_{2}=$), $4.21\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{O}\right), 2.43-$ $2.38\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from each $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\right), 2.35-2.27(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from each $\mathrm{CH}_{2} \mathrm{CH}=$), and $2.17\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 180.4(\mathrm{C}=\mathrm{O}), 132.6(2 \times \mathrm{CH}), 119.6\left(2 \times \mathrm{CH}_{2}=\right), 65.3$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 46.1(\mathrm{C}), 40.9\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right)$, and $30.5\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{CI}$ mode, isobutane) $167(100 \%), 123$ (5), and 81 (5) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 167.1073. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}$ requires $\left.M, 167.1072\right)$.

3-Allyl-3-(1,3-dithian-2-yl)hex-5-en-1-ol 6a. To a solution of $5 \mathrm{a}\left(1.18 \mathrm{~g}, 7.11 \mathrm{mmol}, 1\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1.5 M in toluene, $5.68 \mathrm{ml}, 8.53 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then poured into a solution of K / Na tartrate $(5.37 \mathrm{~g}, 21.3$ $\mathrm{mmol}, 3$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$, and the solution stirred for 1 h . The aqueous layer was then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to
give the lactol ($0.95 \mathrm{~g}, 5.66 \mathrm{mmol}, 80 \%$) as a colourless oil which was used without further purification: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $5.91-5.77(2 \mathrm{H}, \mathrm{m}, 2 \times=\mathrm{CH}), 5.15-5.03\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}=\right.$ and CHOH$), 4.09\left(1 \mathrm{H}, \operatorname{td}, J 8.4,3.5,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.90$ (1 H , apparent $\mathrm{q}, J 8.4,1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{O}$), $2.38-2.24(3 \mathrm{H}, \mathrm{m}$, $=\mathrm{CHCH}_{2}$ and OH$), 2.16(1 \mathrm{H}, \mathrm{dd}, J 13.9,7.3,1 \mathrm{H}$ from $\left.=\mathrm{CHCH}_{2}\right), 2.06\left(1 \mathrm{H}, \mathrm{dd}, J 13.9,7.3,1 \mathrm{H}\right.$ from $\left.=\mathrm{CHCH}_{2}\right)$, $1.91-1.84\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, and $1.80-1.74(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from CH_{2}).

To a solution of the crude lactol $(0.95 \mathrm{~g}, 5.66 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added propane-1,3-dithiol $(0.68 \mathrm{ml}$, $6.79 \mathrm{mmol}, 1.2$ eq.) and powdered $4 \AA$ molecular sieves. The resulting solution was then cooled to $-15^{\circ} \mathrm{C}$ before the dropwise addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.72 \mathrm{ml}, 5.66 \mathrm{mmol}, 1$ eq.) and gradual warming to $0{ }^{\circ} \mathrm{C}$. Aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (eluting with 30% EtOAc in hexane) to give $\mathbf{6 a}(0.76 \mathrm{~g}, 2.94 \mathrm{mmol}, 52 \%)$ as a colourless oil: $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3390 \mathrm{br} \mathrm{s}, 2931 \mathrm{~s}, 2892 \mathrm{~s}, 1643 \mathrm{~m}, 1419 \mathrm{~m}, 1279 \mathrm{~m}, 1033 \mathrm{~s}$, and $1005 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.95-5.84(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=)$, $5.15-5.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}=\right), 4.13(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 3.82(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.0, \mathrm{CH}_{2} \mathrm{OH}\right), 2.92-2.85\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 2.36-2.26(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 2.14-2.07\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, $1.87-1.74\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, and $1.76(2 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.0(2 \times \mathrm{CH}=), 118.5$ $\left(2 \times \mathrm{CH}_{2}=\right), 59.0(\mathrm{SCHS}), 58.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 43.3(\mathrm{C}), 40.6$ $\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 38.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 31.9\left(2 \times \mathrm{CH}_{2} \mathrm{~S}\right)$, and 26.4 $\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{CI}$ mode, isobutane) $259(5 \%), 241$ (10), 151 (100), and 119 (5) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 259.1190 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{OS}_{2}$ requires M, 259.1190).

Ethyl (2E)-5-allyl-5-(1,3-dithian-2-yl)octa-2,7-dienoate.

As for general procedure A. 3-Allyl-3-(1,3-dithian-2-yl)hex-5-en-1-ol $6 \mathbf{a}$ ($438 \mathrm{mg}, 1.70 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation and reaction with (ethoxycarbonylmethylene)triphenylphosphorane for 3 d , and purification by column chromatography (eluting with 15% EtOAc in hexane), gave ethyl ($2 E$)-5-allyl-5-(1,3-dithian-2-yl)octa-2,7-dienoate ($360 \mathrm{mg}, 1.10 \mathrm{mmol}, 65 \%$) as a colourless oil: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2981 \mathrm{~m}, 2931 \mathrm{~s}, 2897 \mathrm{~s}, 1721 \mathrm{~s}, 1649 \mathrm{~m}, 1436 \mathrm{~m}$, 1268 s , and $1173 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.11(1 \mathrm{H}, \mathrm{dt}, J 15.5$, $\left.7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.97-5.88\left(3 \mathrm{H}, \mathrm{m},=\mathrm{CHCO}_{2} \mathrm{Et}\right.$ and $\left.2 \times \mathrm{CH}=\right)$, 5.18-5.11 (4H, m, $\left.2 \times=\mathrm{CH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.08$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}$), $2.93-2.83\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.44(2 \mathrm{H}, \mathrm{dd}$, $\left.J 7.8,1.3, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.33\left(4 \mathrm{H}, \mathrm{d}, J 7.4,2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 2.14-$ $2.07\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.90-1.80\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, and $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.4$ $(\mathrm{C}=\mathrm{O}), 145.3\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 133.9(2 \times-\mathrm{CH}=), 124.2\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $118.8\left(2 \times \mathrm{CH}_{2}=\right), 60.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.1(\mathrm{SCHS}), 44.5(\mathrm{C}), 40.5$ $\left(2 \times \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\right), 38.7\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 32.0\left(2 \times \mathrm{SCH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$, and $14.3\left(\mathrm{CH}_{3}\right) ; m / z$ (CI mode, isobutane) $327(100 \%), 281$ (19), 219 (7), 107 (5), and 81 (7) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 327.1453. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M, 327.1452$) (Found: C, $62.35 ; \mathrm{H}, 8.13$. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $62.53 ; \mathrm{H}, 8.03 \%$).

Ethyl (2E)-5-allyl-5-formylocta-2,7-dienoate 7a. As for general procedure B. Ethyl (2E)-5-allyl-5-(1,3-dithian-2-yl)-octa-2,7-dienoate ($277 \mathrm{mg}, 0.85 \mathrm{mmol}, 1$ eq.) gave aldehyde 7 a ($192 \mathrm{mg}, 0.81 \mathrm{mmol}, 96 \%$) as a pale yellow oil which was used without further purification: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3080 \mathrm{~m}, 2984 \mathrm{~s}$,

2903s, 2833m, 2727m, 1727s (C=O), 1652s, 1448s, 1363s, 1277s, 1224 s , and $1170 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 6.85$ $\left(1 \mathrm{H}, \mathrm{dt}, J 15.6,8.0, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.89(1 \mathrm{H}, \mathrm{dt}, J 15.6,1.2$, $\left.=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.73-5.62(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=), 5.16-5.11(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}=\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.42(2 \mathrm{H}, \mathrm{dd}, J 8.0$, $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.37-2.26\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}=\right)$, and 1.29 $\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.5(\mathrm{C}=\mathrm{O})$, $165.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 143.0\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 132.1(2 \times \mathrm{CH}=)$, 125.1 $\left(=C \mathrm{HCO}_{2} \mathrm{Et}\right), 119.5\left(2 \times \mathrm{CH}_{2}=\right), 60.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.0(\mathrm{C})$, $37.2\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right)$, $34.4\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, and $14.2\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$ mode, isobutane) $237(100 \%), 191$ (21), 163 (5), and 85 (12) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 237.1490 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}$ requires $M, 237.1491$).

2-Oxaspiro[4.4]non-7-en-1-one 5b. To a solution of 3,3-diallyl-2,3,4,5-tetrahydrofuran-2-one $5 \mathrm{5a}(1.00 \mathrm{~g}, 6.02 \mathrm{mmol}$, 1 eq.) in $\mathrm{CHCl}_{2}(40 \mathrm{ml})$ at room temperature was added $\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}(\mathrm{Cl})_{2}=\mathrm{CHPh}(113 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.025 \mathrm{eq}$.$) and the$ solution heated under reflux for 5 h . After the reaction mixture had cooled, filtration through a short column of silica gel (eluting with 30% EtOAc in hexane), then through Celite, was followed by concentration in vacuo. Purification of the residue by column chromatography (eluting with 20% EtOAc in hexane) gave 2-oxaspiro[4.4]non-7-en-1-one 5b ($822 \mathrm{mg}, 5.96$ $\mathrm{mmol}, 99 \%$) as a colourless oil: $v_{\max }$ (soln. in CHCl_{3})/ $/ \mathrm{cm}^{-1}$ $3019 \mathrm{~s}, 2919 \mathrm{~m}, 1763 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1440 \mathrm{~m}, 1375 \mathrm{~m}, 1228 \mathrm{~m}$, and 1181 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.69(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H=\mathrm{CH}), 4.29(2 \mathrm{H}, \mathrm{t}$, $\left.J 6.8, \mathrm{CH}_{2} \mathrm{O}\right), 2.89\left(2 \mathrm{H}, \mathrm{d}, J 14.7,1 \mathrm{H}\right.$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.42$ ($2 \mathrm{H}, \mathrm{d}, J 14.7,1 \mathrm{H}$ from each $\mathrm{CH}_{2} \mathrm{CH}=$), and $2.24(2 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.3(\mathrm{C}=\mathrm{O}), 128.1(2 \times \mathrm{CH}=)$, $65.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 47.3(\mathrm{C}), 43.6\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right)$, and $38.3\left(\mathrm{CH}_{2}\right)$; m / z (EI mode) 138 (24%), 110 (18), 94 (18), 83 (100), 79 (48), and 66 (36) (Found: M^{+}, 138.0678. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires M, 138.0681).

2-[1-(1,3-Dithian-2-yl)cyclopent-3-enyl]ethanol $\mathbf{6 b}$. To a solution of $\mathbf{5 b}\left(829 \mathrm{mg}, 6.00 \mathrm{mmol}, 1\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H (1.5 M in toluene, $4.80 \mathrm{ml}, 7.20$ $\mathrm{mmol}, 1.2$ eq.) dropwise and the resulting solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then poured into a solution of K / Na tartrate ($4.54 \mathrm{~g}, 18.0 \mathrm{mmol}, 3$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$, and the mixture stirred for 1 h . The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ $5 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give 2-oxaspiro[4.4]non-7-en-1-ol ($675 \mathrm{mg}, 4.82 \mathrm{mmol}, 80 \%$) as a colourless oil which was used without further purification: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.74-5.71$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 5.66-5.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 5.03(1 \mathrm{H}, \mathrm{d}, J 3.3$, $\mathrm{CHOH}), 4.11\left(1 \mathrm{H}, \mathrm{td}, J 8.4,2.3,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.87(1 \mathrm{H}$, dt, $J 8.4,7.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.79-2.74(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 2.58(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{OH}), 2.36-2.21(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 2.17-2.09\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from each $\left.\mathrm{CH}_{2}\right)$, and 1.89 (1 H , ddd, $J 11.9,7.0,2.2$, 1 H from CH_{2}).

To a solution of the lactol ($675 \mathrm{mg}, 4.82 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added propane-1,3-dithiol $(0.58 \mathrm{ml}$, 5.79 $\mathrm{mmol}, 1.2$ eq.) and powdered $4 \AA$ molecular sieves and the resulting solution cooled to $-15^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.61 \mathrm{ml}, 4.82$ $\mathrm{mmol}, 1 \mathrm{eq}$.) was then added dropwise and the reaction mixture allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 2 h . Aqueous saturated NaHCO_{3} $(6 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography (eluting with 30% EtOAc in hexane) to give $\mathbf{6 b}(1.04 \mathrm{~g}$, $4.52 \mathrm{mmol}, 94 \%$) as a colourless oil: $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3378 \mathrm{br} \mathrm{s}$ $(\mathrm{OH}), 2896 \mathrm{~s}, 2843 \mathrm{~m}, 1416 \mathrm{~m}, 1275 \mathrm{~m}$, and $1034 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.61(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H=\mathrm{CH}), 4.20(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 3.71(2 \mathrm{H}$, $\left.\mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{OH}\right), 2.93-2.83\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 2.75(2 \mathrm{H}, \mathrm{d}$, $J 14.3$, 1 H from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.24(2 \mathrm{H}, \mathrm{d}, J 14.3,1 \mathrm{H}$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.14-2.07\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.93(2 \mathrm{H}, \mathrm{t}$, $\left.J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, and $1.89-1.75\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 128.9(2 \times \mathrm{CH}=), 60.0(\mathrm{CH}), 59.9$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 48.0(\mathrm{C}), 42.9\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 41.4\left(\mathrm{CH}_{2}\right), 31.2$ $\left(2 \times \mathrm{CH}_{2} \mathrm{~S}\right)$, and $26.0\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 231 $(5 \%), 213(10), 123(100)$, and 119 (8) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 231.0876. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{OS}_{2}$ requires $M, 231.0877$) (Found: C, 57.50; $\mathrm{H}, 7.92 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{OS}_{2}$ requires $\mathrm{C}, 57.34 ; \mathrm{H}, 7.87 \%$).

Ethyl (E)-4-[1-(1,3-dithian-2-yl)cyclopent-3-enyl]but-2-enoate.

As for general procedure A. 2-[1-(1,3-Dithian-2-yl)cyclopent-3enyllethanol $\mathbf{6 b}$ ($1.02 \mathrm{~g}, 4.43 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation and reaction with (ethoxycarbonylmethylene)triphenylphosphorane for 16 h , and purification by column chromatography (eluting with 15% EtOAc in hexane), gave ethyl (E)-4-[1-(1,3-dithian-2-yl)cyclopent-3-enyl]but-2-enoate ($912 \mathrm{mg}, 3.06 \mathrm{mmol}, 69 \%$) as a colourless oil: $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2984 \mathrm{~m}, 2895 \mathrm{~s}, 2849 \mathrm{~m}, 1721 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O}), 1651 \mathrm{~s}, 1428 \mathrm{~m}, 1269 \mathrm{~s}$, and $1169 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $6.94\left(1 \mathrm{H}, \mathrm{dt}, J 15.4,7.7, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.93(1 \mathrm{H}, \mathrm{d}, J 15.4, \mathrm{CH}=)$, $5.60(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{CH}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.13(1 \mathrm{H}$, s , SCHS), 2.94-2.85 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~S}$), $2.79(2 \mathrm{H}, \mathrm{d}, J 14.9,1 \mathrm{H}$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.51\left(2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $2.20\left(2 \mathrm{H}, \mathrm{d}, J 14.9,1 \mathrm{H}\right.$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.10(1 \mathrm{H}, \mathrm{dt}$, $J 10.4,3.4,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.88-1.77(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$, and $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $166.4(\mathrm{C}=\mathrm{O})$, $145.0\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 128.8(2 \times \mathrm{CH}=), 124.0(=\mathrm{CH})$, $60.2\left(\mathrm{OCH}_{2}\right), 59.2(\mathrm{CH}), 48.7(\mathrm{C}), 42.0\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 41.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $31.1\left(2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 25.9\left(\mathrm{CH}_{2}\right)$, and $14.2\left(\mathrm{CH}_{3}\right)$; m / z (EI mode) 298 (12\%), 253 (6), 185 (17), and 119 (100) (Found: M^{+}, 298.1060. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires M, 298.1061) (Found: C, $60.12 ; \mathrm{H}, 7.23 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.36 ; \mathrm{H}$, 7.43%).

Ethyl (E)-4-(1-formylcyclopent-3-enyl)but-2-enoate 7b. As for general procedure B. Ethyl (E)-4-[1-(1,3-dithian-2-yl)cyclo-pent-3-enyl]but-2-enoate ($300 \mathrm{mg}, 1.01 \mathrm{mmol}, 1 \mathrm{eq}$.) gave 7b ($195 \mathrm{mg}, 0.94 \mathrm{mmol}, 93 \%$) which was used without further purification: $v_{\text {max }}$ (soln. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3019 \mathrm{~s}, 1721 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, $1657 \mathrm{~m}, 1440 \mathrm{~m}, 1275 \mathrm{~m}, 1222 \mathrm{~s}$, and 1034 m ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 6.83\left(1 \mathrm{H}, \mathrm{dt}, J 15.3,7.5, \mathrm{CH}_{2} \mathrm{CH}=\right)$, $5.87\left(1 \mathrm{H}, \mathrm{dt}, J 15.3,1.4,=\mathrm{CHCO}{ }_{2} \mathrm{Et}\right), 5.66(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{CH})$, $4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.74(2 \mathrm{H}, \mathrm{d}, J 14.4,1 \mathrm{H}$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.55\left(2 \mathrm{H}, \mathrm{dd}, J 7.5,1.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $2.31\left(2 \mathrm{H}, \mathrm{d}, J 14.4,1 \mathrm{H}\right.$ from each $\left.\mathrm{CH}_{2} \mathrm{CH}=\right)$, and $1.29(3 \mathrm{H}, \mathrm{q}$, $\left.J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.6(\mathrm{CHO}), 166.0$ $(\mathrm{C}=\mathrm{O}), 143.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 128.6(2 \times \mathrm{CH}), 124.4$ $\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 60.3\left(\mathrm{OCH}_{2}\right), 55.7(\mathrm{C}), 39.0\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 37.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, and $14.6\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 209 (100%), 163 (12), 85 (5) and 69 (7) (Found: ($\mathrm{M}+\mathrm{H})^{+}$, 209.1178. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}$ requires $M, 209.1178$).

2-[(E)-1,1-Dimethyl-3-(2-oxotetrahydrofuran-3-ylidene)-

propyl]-1,3-dithiane 8. As for general procedure A. 3-(1,3-Dithian-2-yl)3-methylbutan-1-ol 2a ($481 \mathrm{mg}, 2.33 \mathrm{mmol}, 1 \mathrm{eq}$.), after oxidation and reaction with (1-butyrolactonylidene)triphenylphosphorane ${ }^{12}$ for 27 h , and purification by column chromatography (eluting with 30% EtOAc in hexane), gave $8(603 \mathrm{mg}, 2.21 \mathrm{mmol}, 84 \%)$ as a $4: 1$ mixture of (E) and (Z) isomers: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2965 \mathrm{~s}, 2929 \mathrm{~s}, 2828 \mathrm{~m}, 1755 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1679s, 1483m, 1465s, 1422s, 1387s, 1368s, 1216s, and 1034s; m/z (EI mode) 272 (10\%), 161 (35), 119 (100), 112 (5), 83 (5), and 41 (5) (Found: $\mathrm{M}^{+}, 272.0905 . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~S}_{2} \mathrm{O}_{2}$ requires $M, 272.0900$). The isomers were isolated by further chromatography (eluting with $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right):(E)$ isomer; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.82(1 \mathrm{H}, \mathrm{tt}$,
$\left.J 7.8,2.9, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.38\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.03(1 \mathrm{H}, \mathrm{s}$, SCHS), 2.96-2.88 ($6 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and 4 H from $\left.2 \times \mathrm{SCH}_{2}\right), 2.39\left(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.13-2.06(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\mathrm{SCH}_{2} \mathrm{CH}_{2}$), 1.86-1.77 $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, and $1.17(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.3(\mathrm{C}=\mathrm{O}), 136.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 127.9(\mathrm{CH}=\mathrm{C}), 65.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 60.2(\mathrm{SCHS}), 41.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $39.7(\mathrm{C}), 31.5\left(2 \times \mathrm{SCH}_{2}\right), 26.1\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $25.7\left(2 \times \mathrm{CH}_{3}\right)$: (Z) isomer; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 6.38-6.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.32\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.06(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 2.99-2.94\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ from $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and 2 H from $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.91-2.88\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.13-2.06$ $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.88-1.77(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, and $1.13(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $170.0(\mathrm{C}=\mathrm{O}), 140.0\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 125.9(\mathrm{CH}=\mathrm{C}), 65.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 60.7 (SCHS), 39.6 (C), $37.4\left(\mathrm{CH}_{2} \mathrm{CH}=\right.$), $31.6\left(2 \times \mathrm{SCH}_{2}\right), 29.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $26.2\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, and $25.3(2 \times \mathrm{Me})$.
(E)-2,2-Dimethyl-4-[2-oxotetrahydrofuran-3-ylidene]butanal 9. As for general procedure B. 2-[(E)-1,1-Dimethyl-3-(2-oxotetrahydrofuran-3-ylidene)propyl]-1,3-dithiane 8 (117 mg , $0.43 \mathrm{mmol}, 1 \mathrm{eq}$.$) gave the aldehyde 9(80 \mathrm{mg}, 0.43 \mathrm{mmol}$, 99%) as a clear yellow oil which was used without further purification: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2969 \mathrm{~s}, 2930 \mathrm{~s}, 2873 \mathrm{~s}, 2816 \mathrm{~m}, 2712 \mathrm{~m}$, $1752 \mathrm{~s}, 1725 \mathrm{~s}, 1681 \mathrm{~s}, 1366 \mathrm{~m}, 1354 \mathrm{~m}, 1214 \mathrm{~s}$, and $1034 \mathrm{~s} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 6.71(1 \mathrm{H}, \mathrm{tt}, J 7.9,3.0$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 4.39\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.92-2.87(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.35\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{CH}_{2} \mathrm{CH}=\right)$, and $1.15(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.6(\mathrm{CHO}), 170.9(\mathrm{C}=\mathrm{O})$, $135.4\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 128.3(\mathrm{CH}=\mathrm{C}), 65.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 46.5(\mathrm{C})$, $37.2\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 25.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 21.7(2 \times \mathrm{Me}) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$ mode, isobutane) 183 (100%), 169 (3), 165 (2), 154 (2), 121 (1), and 99 (1) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 183.1019. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}$ requires M, 183.1017).

3-(1,3-Dithian-2-yl)-3-methylbutan-1-al.

To a solution of 3-(1,3-dithian-2-yl)-3-methylbutan-1-ol 2a ($300 \mathrm{mg}, 1.45 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added DMSO ($1.03 \mathrm{ml}, 14.5 \mathrm{mmol}, 10 \mathrm{eq}$.$) and triethylamine (0.99 \mathrm{ml}$, $9.59 \mathrm{mmol}, 6.6$ eq.). After 5 min , pyridine-sulfur trioxide complex ($879 \mathrm{mg}, 5.52 \mathrm{mmol}, 3.8$ eq.) was added and the reaction mixture stirred for 4.5 h . Aqueous saturated $\mathrm{NaHCO}_{3}(2 \mathrm{ml})$ was then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography (eluting with 20\% EtOAc in hexane) to give 3-(1,3-dithian-2-yl)-3-methylbutan-1-al (218 $\mathrm{mg}, 1.06 \mathrm{mmol}, 72 \%$) as a clear colourless oil: $v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ 2963s, 2931s, 2900s, $2829 \mathrm{~m}, 2734 \mathrm{~m}, 1718 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1389 m , $1369 \mathrm{~m}, 1046 \mathrm{~m}$, and 907 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.86(1 \mathrm{H}, \mathrm{d}$, $J 2.0, \mathrm{CHO}), 4.24(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 2.94-2.89\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right)$, $2.60\left(2 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.13-2.08(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.88-1.76\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}\right)$, and 1.27 $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.9(\mathrm{CHO}), 60.1$ (SCHS), $53.1\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 38.7(\mathrm{Me}), 31.5\left(2 \times \mathrm{SCH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2}\right)$, and $26.0\left(2 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (EI mode) $204(11 \%), 160$ (89), 145 (8), 119 (100), 85 (12), 59 (8), and 41 (23) (Found: $\mathrm{M}^{+}, 204.0643 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OS}_{2}$ requires $\left.M, 204.0639\right)$.

2-[(E)-(1,1-Dimethyl-4-phenylsulfonylbut-3-enyl)]-1,3-dithiane 10. To a stirred solution of $\mathrm{MeSO}_{2} \mathrm{Ph}(321 \mathrm{mg}, 2.05 \mathrm{mmol}$, 2 eq.) in THF (16 ml) at $0^{\circ} \mathrm{C}$ was added n-butyllithium (1.55 M in hexane, $2.92 \mathrm{ml}, 4.52 \mathrm{mmol}, 4.4$ eq.) and the mixture left
for 30 min before the dropwise addition of a solution of diethylchlorophosphate ($0.30 \mathrm{ml}, 2.05 \mathrm{mmol}, 2 \mathrm{eq}$.) in THF (4 ml). The reaction was stirred for a further 30 min before being cooled to $-78^{\circ} \mathrm{C}$ and a solution of the 3 -(1,3-dithian-2-yl)-3-methyl-butan-1-al ($210 \mathrm{mg}, 1.03 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (4 ml) was added. After a further 1 h , the reaction mixture was allowed to warm to room temperature and stirred for 12 h . Aqueous saturated $\mathrm{NaHCO}_{3}(1 \mathrm{ml})$ was added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (eluting with 20% EtOAc in hexane) to give vinyl sulfone 10 (244 mg , $0.71 \mathrm{mmol}, 69 \%$) as a pale yellow oil: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3023 \mathrm{~s}$, $2968 \mathrm{~m}, 2903 \mathrm{~m}, 1631 \mathrm{~m}$ (C=C), 1526m, 1451m, 1426m, 1321s $\left(\mathrm{SO}_{2}\right), 1226 \mathrm{~s}, 1201 \mathrm{~s}, 1146 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, and $1086 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.91(2 \mathrm{H}, \mathrm{d}, J 7.7,2 \times \mathrm{ArH}), 7.64-7.54(3 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{ArH}), 7.00\left(1 \mathrm{H}, \mathrm{dt}, J 14.9,8.0, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.45(1 \mathrm{H}$, d, $J 14.9$, $=\mathrm{CHSO}_{2} \mathrm{Ph}$), $3.85(1 \mathrm{H}, \mathrm{s}, \mathrm{SCHS}), 2.87-2.72(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.40\left(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.07-2.01(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.81-1.71\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right)$, and 1.13 $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.0\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, 141.1 (ArC), $133.6\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 133.5(\mathrm{ArCH}), 129.5$ $(2 \times \mathrm{ArCH})$, $127.8(2 \times \mathrm{ArCH}), 60.1(\mathrm{SCHS}), 42.1\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, 39.4 (C), $31.4\left(2 \times \mathrm{SCH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$, and $25.7(2 \times \mathrm{Me})$; m / z (CI mode, isobutane) 343 (100%), 271 (9), 237 (15), 201 (12), and 119 (5) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 343.0860. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{3}$ requires $M, 343.0855)$.
(E)-2,2-Dimethyl-5-phenylsulfonylpent-4-enal 11. As for general procedure B. (E)-2-(1,1-Dimethyl-4-phenylsulfonylbut-3-enyl)-1,3-dithiane 10 gave aldehyde 11 ($181 \mathrm{mg}, 0.72 \mathrm{mmol}$, 100%) as a clear pale yellow oil which was used without further purification: $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3049 \mathrm{w}, 2968 \mathrm{~m}, 2932 \mathrm{~m}, 2873 \mathrm{~m}$, 2813w, 2713w, 1725s (C=O), 1632m (C=C), 1379w, 1368w, $1317 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1147 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1086 \mathrm{~s}$, and $750 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.88(2 \mathrm{H}, \mathrm{d}, J 7.9,2 \times \mathrm{ArH}), 7.65-$ $7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.58-7.54(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 6.91(1 \mathrm{H}$, $\left.\mathrm{dt}, J 15.0,7.8, \mathrm{CH}_{2} \mathrm{CH}=\right), 6.39\left(1 \mathrm{H}, \mathrm{d}, J 15.0=\mathrm{C} H \mathrm{SO}_{2} \mathrm{Ph}\right), 2.39$ ($2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=$), and $1.11(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 204.0(\mathrm{CHO}), 142.1\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 140.5(\mathrm{ArC}), 133.8$ $\left(=\mathrm{CHSO}_{2} \mathrm{Ph}\right), \quad 133.6(\mathrm{ArCH}), \quad 129.5 \quad(2 \times \mathrm{ArCH}), \quad 127.8$ $(2 \times \mathrm{ArCH}), 46.0(\mathrm{C}), 38.4\left(\mathrm{CH}_{2}\right)$, and $21.7(2 \times \mathrm{Me}) ; m / z$ (CI mode, isobutane) 253 (100%), 183 (6), 111 (4), 81 (3), and 69 (3) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 253.0898. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{SO}_{3}$ requires M, 253.0894).

(3R)-3-(Benzyloxy)-2,2-dimethyl-3-(1,3-dithian-2-yl)propan-

 1-ol.

To a solution of ($3 R$)-3-(benzyloxy)-4,5-dihydro-4,4-dimethyl-furan-2(3H)-one ${ }^{7}$ ($800 \mathrm{mg}, 3.62 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}$) at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL- $\mathrm{H}(1.5 \mathrm{M}$ in toluene, $2.90 \mathrm{ml}, 4.34$ mmol, 1.2 eq .) and the solution stirred for 1 h . The reaction mixture was then poured into a solution of K / Na tartrate ($2.74 \mathrm{~g}, 10.9 \mathrm{mmol}, 3$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. After stirring for 1 h , the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the crude lactol ($646 \mathrm{mg}, 2.90 \mathrm{mmol}, 80 \%$) as a crystalline solid which was used without further purification: δ_{H} (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.37-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.38(1 \mathrm{H}, \mathrm{dd}, J 3.8,2.9$, $\mathrm{CHOH}), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 12.0,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.59(1 \mathrm{H}, \mathrm{d}$, $J 12.0,1 \mathrm{H}$ from $\left.\mathrm{PhCH}_{2}\right), 3.82\left(1 \mathrm{H}, \mathrm{d}, J 8.4,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right)$,
$3.64\left(1 \mathrm{H}, \mathrm{d}, J 8.4,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.52(1 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{CHOBn})$, $3.10(1 \mathrm{H}, \mathrm{d}, J 3.8, \mathrm{OH}), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

To a solution of the crude lactol ($646 \mathrm{mg}, 2.90 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ was added $4 \AA$ molecular sieves and propane-1,3-dithiol ($0.40 \mathrm{ml}, 3.98 \mathrm{mmol}, 1.2 \mathrm{eq}$.). Trifluoromethanesulfonic acid $(0.10 \mathrm{ml})$ was then added dropwise and the resulting solution allowed to warm to room temperature and stirred for 60 h . Aqueous saturated $\mathrm{NaHCO}_{3}(4 \mathrm{ml})$ was then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with $20 \% \mathrm{EtOAc}$ in hexane) gave ($3 R$)-3-(benzyloxy)-2,2-dimethyl-3-(1,3-dithian-2-yl)propan-1-ol ($724 \mathrm{mg}, 2.32 \mathrm{mmol}, 80 \%$) as a colourless oil: $[a]_{\mathrm{D}}+34.9\left(c 1.05, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3448 \mathrm{br} \mathrm{s}, 2961 \mathrm{~s}$, $2890 \mathrm{~s}, 1475 \mathrm{~m}, 1451 \mathrm{~m}, 1422 \mathrm{~m}, 1269 \mathrm{~m}$, and $1099 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.36-7.26(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 5.12(1 \mathrm{H}, \mathrm{d}, J 11.2,1 \mathrm{H}$ from PhCH_{2}), $4.57\left(1 \mathrm{H}, \mathrm{d}, J 11.2,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.57(1 \mathrm{H}$, d, $J 1.6$, SCHS $), 3.48-3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.27(1 \mathrm{H}, \mathrm{d}, J 1.6$, $\mathrm{C} H \mathrm{OBn}), 3.04\left(1 \mathrm{H}, \operatorname{td}, J 12.8,2.4,1 \mathrm{H}\right.$ from $\left.{ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{~S}\right), 2.96(1 \mathrm{H}$, td, $J 12.0,2.0,1 \mathrm{H}$ from $\left.{ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{~S}\right), 2.86-2.80(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from each $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 2.46(1 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{OH}), 2.15(1 \mathrm{H}, \mathrm{dm}, J 14.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.91\left(1 \mathrm{H}, \mathrm{qm}, J 14.0,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.00(3 \mathrm{H}, \mathrm{s}$, Me), and $0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.7(\mathrm{ArC})$, $128.4(\mathrm{ArCH} \times 2), 128.3(\mathrm{ArCH} \times 2), 127.8(\mathrm{ArCH}), 87.9$ $(\mathrm{CHOBn}), 74.5\left(\mathrm{PhCH}_{2}\right), 69.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 51.2$ (SCHS), 40.6 (C), $32.9\left(\mathrm{~S}^{\mathrm{A}} \mathrm{CH}_{2}\right), 30.7\left(\mathrm{~S}^{\mathrm{B}} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 23.1(\mathrm{Me})$, and 20.7 (Me); m/z (EI mode) 312 (5\%), 193 (32), 119 (64), 91 (100), 83 (7), and 57 (8) (Found: C, 61.28; H, 7.63. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 61.50 ; \mathrm{H}, 7.74 \%$).
(3R)-3-(Benzyloxy)-2,2-dimethyl-3-(1,3-dithian-2-yl)propan-1-al ${ }^{7}$ 12. To a solution of ($3 R$)-3-(benzyloxy)-2,2-dimethyl-3(1,3 -dithian-2-yl)propan-1-ol ($477 \mathrm{mg}, 1.53 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added DMSO $(1.08 \mathrm{ml}, 15.3 \mathrm{mmol}$, 10 eq.) and $\mathrm{NEt}_{3}(1.04 \mathrm{ml}, 10.1 \mathrm{mmol}, 6.6$ eq.) and the resulting solution stirred at $0^{\circ} \mathrm{C}$ for 5 min . Pyridine-sulfur trioxide complex ($922 \mathrm{mg}, 5.80 \mathrm{mmol}, 3.8 \mathrm{eq}$.) was then added and the solution stirred at $0^{\circ} \mathrm{C}$ for 30 min , then at room temperature for 3 h . Aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ were added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 10% EtOAc in hexane) gave the aldehyde $\mathbf{1 2}(420 \mathrm{mg}, 1.36 \mathrm{mmol}, 89 \%)$ as a colourless oil: $[a]_{\mathrm{D}}+31.7\left(c 1.10, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\right.$ soln. in $\left.\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3025 \mathrm{~s}, 2902 \mathrm{~m}, 1721 \mathrm{~s}, 1692 \mathrm{~m}, 1528 \mathrm{~m}, 1469 \mathrm{~m}$, and 1422 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.41-7.27(5 \mathrm{H}, \mathrm{m}$, $5 \times \mathrm{ArH}), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 11.2,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.62(1 \mathrm{H}, \mathrm{d}$, $J 11.2,1 \mathrm{H}$ from PhCH_{2}), 4.09 ($1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{SCHS}$), 3.76 (1 H , d, $J 4.4, \mathrm{C} H \mathrm{OBn}), 2.88(1 \mathrm{H}$, ddd, $J 14.0,6.4,2.8,1 \mathrm{H}$ from $\left.\mathrm{SCH}_{2}\right), 2.82-2.74\left(3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from SCH_{2} and $\left.\mathrm{SCH}_{2}\right), 2.12-2.06$ $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 2.00-1.95\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.18$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), and $1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.2$ $(\mathrm{CHO}), 137.7(\mathrm{ArC}), 128.3(\mathrm{ArCH} \times 2), 128.0(\mathrm{ArCH} \times 2)$, $127.7(\mathrm{ArCH}), 85.1(\mathrm{CHOBn}), 75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 51.0(\mathrm{C}), 48.6$ (SCHS), $30.2\left(\mathrm{SCH}_{2}\right), 28.8\left(\mathrm{SCH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 20.0(\mathrm{Me})$, and 18.7 (Me); m / z (CI mode, isobutane) 311 (100%), 239 (11), 203 (9), 197 (8), 119 (6), and 91 (3) (Found: C, 61.93; H, 7.08. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $61.90 ; \mathrm{H}, 7.14 \%$).

Ethyl (E,5R)-5-(benzyloxy)-4,4-dimethyl-5-(1,3-dithian-2-yl)-pent-2-enoate. ${ }^{7}$

To a solution of $\mathbf{1 2}\left(360 \mathrm{mg}, 1.16 \mathrm{mmol}, 1\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ at room temperature was added (ethoxycarbonyl)triphenylphosphorane ($1.21 \mathrm{~g}, 3.48 \mathrm{mmol}, 3 \mathrm{eq}$.) and the solution stirred at room temperature for 4 days. Aqueous saturated NaHCO_{3} $(5 \mathrm{ml})$ was then added and the aqueous layer separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 10% EtOAc in hexane) gave recovered aldehyde 12 (72.0 $\mathrm{mg}, 0.23 \mathrm{mmol}, 20 \%$), and ethyl ($E, 5 R$)-5-(benzyloxy)-4,4-dimethyl-5-(1,3 -dithian-2-yl)pent-2-enoate ($287 \mathrm{mg}, 0.75 \mathrm{mmol}$, 65%) as a colourless oil: $[a]_{\mathrm{D}}+28.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (soln. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3017 \mathrm{~s}, 2899 \mathrm{~m}, 1711 \mathrm{~s}, 1648 \mathrm{~m}, 1423 \mathrm{~m}$, and 1310 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.18(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 6.97(1 \mathrm{H}, \mathrm{d}$, $\left.J 16.0, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.75\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $5.00\left(1 \mathrm{H}, \mathrm{d}, J 11.4,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J 11.4,1 \mathrm{H}$ from $\left.\mathrm{PhC} H_{2}\right), 4.25(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{SCHS}), 4.12(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.14(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{CHOBn}), 2.88(1 \mathrm{H}, \mathrm{td}, J 12.6,2.4$, 1 H from SCH_{2}), 2.81-2.64 ($3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from SCH_{2} and SCH_{2}), 2.04-1.97 $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2}\right), 1.84-1.72(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and 1.03 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6(\mathrm{C}=\mathrm{O}), 154.4(\mathrm{CH}=$ $\left.\mathrm{CHCO}_{2} \mathrm{Et}\right), 137.6(\mathrm{ArC}), 128.1(\mathrm{ArCH}), 128.1(\mathrm{ArCH}), 128.0$ $(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 127.5(\mathrm{ArCH}), 119.1\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $87.1(\mathrm{CHOBn}), 74.4\left(\mathrm{PhCH}_{2}\right), 60.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.2(\mathrm{SCHS})$, $42.8(\mathrm{C}), 32.5\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.4\left(\mathrm{CH}_{2} \mathrm{~S}\right), 26.1\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.5$ $\left(\mathrm{CH}_{3}\right)$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 381 (100%), 261 (12), 239 (5), 197 (32), 119 (12), and 91 (9) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 381.1559 . \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\left.M, 381.1558\right)$.

Ethyl ($\boldsymbol{E}, 5 R$)-5-(benzyloxy)-4,4-dimethyl-6-oxohex-2-enoate ${ }^{7}$ 13. As for general procedure B. Ethyl $(E, 5 R)$-5-(benzyloxy)-4,4-dimethyl-5-(1,3-dithian-2-yl)pent-2-enoate ($200 \mathrm{mg}, 0.53$ mmol, 1 eq.) gave aldehyde $13(146 \mathrm{mg}, 0.50 \mathrm{mmol}, 95 \%)$ as a pale yellow oil which was used without further purification: $[a]_{\mathrm{D}}+16.6\left(c 1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{soln}\right.$. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3017 \mathrm{~s}$, $1726 \mathrm{~s}, 1520 \mathrm{~m}, 1310 \mathrm{~m}$, and 1100 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.61$ ($1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{CHO}), 7.36-7.31(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{d}$, $\left.J 16.0, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.80\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CH}=\mathrm{CHCO} \mathrm{C}_{2} \mathrm{Et}\right)$, $4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.6,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J 11.6$, 1 H from $\left.\mathrm{PhCH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.44(1 \mathrm{H}, \mathrm{d}$, $J 3.4, \mathrm{C} H \mathrm{OBn}), 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.16(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.2(\mathrm{CHO}), 166.5\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $152.5\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 136.9(\mathrm{ArC}), 128.5(2 \times \mathrm{ArCH}), 128.1$ $(\mathrm{ArCH}), 128.0 \quad(2 \times \mathrm{ArCH}), 120.1 \quad\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 88.5$ (CHOBn), $73.1\left(\mathrm{PhCH}_{2}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 40.7(\mathrm{C}), 23.3(\mathrm{Me})$, $22.7(\mathrm{Me})$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 291 (100%), 261 (8), 245 (11), 171 (8), and 91 (42) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 291.1596. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4}$ requires $\left.M, 291.1596\right)$.

2-[(E,1R)-1-(Benzyloxy)-2,2-dimethyl-4-(phenylsulfonyl)but-3-enyl]-1,3-dithiane.

To a solution of methyl phenyl sulfone ($24.0 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1 eq.) in THF (1 ml) at $0^{\circ} \mathrm{C}$ was added n-butyllithium (1.55 M in hexanes, $0.22 \mathrm{ml}, 0.33 \mathrm{mmol}, 2.2 \mathrm{eq}$.) and the solution stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of diethylchlorophosphate ($0.02 \mathrm{ml}, 0.15 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (1 ml) was then added dropwise and the resulting solution stirred for 30 min at $0^{\circ} \mathrm{C}$, then cooled to $-78^{\circ} \mathrm{C}$. Aldehyde $12(47.0 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1 eq .) was then added as a solution in THF (1 ml) and the reaction allowed to warm to room temperature over 12 h . Aqueous saturated $\mathrm{NaHCO}_{3}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ were then added and the aqueous layer separated and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (eluting with 30% EtOAc in hexane) to give recovered aldehyde $\mathbf{1 2}(7.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 16 \%)$ and 2-[(E,1R)-1-(benzyloxy)-2,2-dimethyl-4-(phenylsulfonyl)-but-3-enyl]-1,3-dithiane ($45 \mathrm{mg}, 0.10 \mathrm{mmol}, 67 \%$) as a colourless oil: $[a]_{\mathrm{D}}+63.5\left(c 0.6, \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}$ (soln. in CHCl_{3}) $/ \mathrm{cm}^{-1}$ $3019 \mathrm{~s}, 1522 \mathrm{~m}, 1474 \mathrm{w}, 1416 \mathrm{~m}, 1322 \mathrm{w}$, and 1152 m ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.91(2 \mathrm{H}$, apparent d, $J 7.9,2 \times \mathrm{ArH}), 7.60-7.56(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.50-7.46(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.39-7.28(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.14\left(1 \mathrm{H}, \mathrm{d}, J 15.4, \mathrm{C} H=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.30(1 \mathrm{H}, \mathrm{d}$, J 15.4, $\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}$), $5.09\left(1 \mathrm{H}, \mathrm{d}, J 11.3,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right)$, $4.53\left(1 \mathrm{H}, \mathrm{d}, J 11.3,1 \mathrm{H}\right.$ from $\left.\mathrm{PhCH}_{2}\right), 4.21$ ($1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{SCHS}$), $3.24(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C} H \mathrm{OBn}), 2.88-2.61\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S} \times 2\right)$, 2.10-1.95 ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from CH_{2}), 1.89-1.82 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 152.3\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 140.6(\mathrm{ArC}), 137.5(\mathrm{ArC})$, $133.1(\mathrm{ArCH}), 129.1(2 \times \mathrm{ArCH}), 128.6\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 128.2$ $(2 \times \mathrm{ArCH}), 128.0(2 \times \mathrm{ArCH}), 127.7(2 \times \mathrm{ArCH}), 127.7$ (ArCH), $87.3(\mathrm{CHOBn}), 74.6\left(\mathrm{PhCH}_{2}\right), 51.1(\mathrm{SCHS}), 43.1(\mathrm{C})$, $32.5\left(\mathrm{SCH}_{2}\right), 30.48\left(\mathrm{SCH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{3}\right)$, and 23.4 $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 449 (100%), 307 (9), 197 (34), 165 (8), 147 (4), and 119 (22) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 449.1278$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~S}_{3}$ requires $M, 449.1279$).
($E, 2 R$)-2-(Benzyloxy)-3,3-dimethyl-5-(phenylsulfonyl)pent-4enal 14. As for general procedure B. $2-[(E, 1 R)-1$-(Benzyloxy)-2,2-dimethyl-4-(phenylsulfonyl)but-3-enyl]-1,3-dithiane (128 $\mathrm{mg}, 0.29 \mathrm{mmol}, 1 \mathrm{eq}$.$) gave aldehyde 14(100 \mathrm{mg}, 0.28 \mathrm{mmol}$, 98%) as a colourless oil which was used without further purification: $[a]_{\mathrm{D}}+39.7$ (c 1.2, CHCl_{3}); $v_{\text {max }}$ (soln. in CHCl_{3})/ cm^{-1} $3010 \mathrm{~s}, 1733 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1516 \mathrm{~m}, 1445 \mathrm{~m}, 1422 \mathrm{~m}, 1310 \mathrm{~m}$, and 1263 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.49(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{CHO}), 7.78(2 \mathrm{H}, \mathrm{d}$, $J 8.3,2 \times \mathrm{ArH}), 7.55-7.51(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.45-7.42(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}), 7.30-7.19\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H_{5} \mathrm{CH}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{d}, J 15.4$, $\left.\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 6.20\left(1 \mathrm{H}, \mathrm{d}, J 15.4, \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 4.57(1 \mathrm{H}$, d, $J 11.7,1 \mathrm{H}$ from PhCH_{2}), 4.37 ($1 \mathrm{H}, \mathrm{d}, J 11.7,1 \mathrm{H}$ from $\left.\mathrm{PhCH}_{2}\right), 3.37(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{CHOBn})$, and $1.07(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.7(\mathrm{CHO}), 150.7\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right)$, $140.3(\mathrm{ArC}), 136.5(\mathrm{ArC}), 133.3(\mathrm{ArCH}), 129.5(\mathrm{CH}=\mathrm{CH}-$ $\left.\mathrm{SO}_{2} \mathrm{Ph}\right), 129.2(2 \times \mathrm{ArCH}), 128.5(2 \times \mathrm{ArCH}), 128.2(\mathrm{ArCH})$, $128.0(2 \times \mathrm{ArCH}), 127.5(2 \times \mathrm{ArCH}), 87.9(\mathrm{CHOBn}), 73.2$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 41.1(\mathrm{C}), 23.0\left(\mathrm{CH}_{3}\right)$, and $22.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$ mode, isobutane) 359 (100%), 329 (4), 269 (15), 239 (38), 211 (12), 209 (8), 181 (7), 143 (10), 91 (73), and 79 (7) (Found: ($\mathrm{M}+\mathrm{H})^{+}$, 359.1319. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 359.1317$).

Cyclisations: general cyclisation procedure \mathbf{C}

Ethyl [rel-(1R,2R)-2-hydroxy-3,3-dimethylcyclobutyl]ethanoate (entry 1, Table 1). To a solution of samarium(II) iodide (0.1 M in THF, $2.80 \mathrm{ml}, 0.28 \mathrm{mmol}, 2$ eq.) and $\mathrm{MeOH}(0.83 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, was added 4 aa ($25.1 \mathrm{mg}, 0.14 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF $(0.5 \mathrm{ml})$. The reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 5 min . Aqueous saturated $\mathrm{NaCl}(1 \mathrm{ml})$ and citric acid $(58.8 \mathrm{mg}, 0.28$ $\mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction mixture allowed to$ warm to room temperature. The aqueous layer was separated and extracted with EtOAc ($3 \times 4 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by column chromatography (eluting with 30% EtOAc in hexane) gave ethyl [rel-($1 R, 2 R$)-2-hydroxy-3,3dimethylcyclobutyl]ethanoate ($17.0 \mathrm{mg}, 0.09 \mathrm{mmol}, 65 \%$) as a colourless oil: $v_{\text {max }}$ (soln. in CHCl_{3})/ $\mathrm{cm}^{-1} 3500 \mathrm{br} \mathrm{s}(\mathrm{OH})$, 2954m, 2859w, 1714s (C=O), 1467m, 1377m, 1215m, and $1099 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.4, \mathrm{CHOH}), 2.53-2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $2.33\left(1 \mathrm{H}\right.$, apparent septet, $\left.J 7.4, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.73(1 \mathrm{H}$, apparent $\mathrm{t}, J 10.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.04(1 \mathrm{H}$, apparent t , $J 10.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.6(\mathrm{C}=\mathrm{O}), 79.4$
$(\mathrm{CHOH}), 60.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.8\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 38.5(\mathrm{C}), 36.9$ $(\mathrm{CH}), 33.6\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (CI mode, isobutane) 187 (27%), 169 (100), and 130 (3) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 187.1333. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3}$ requires $M, 187.1334$).

Ethyl rel-(2R)-[rel-(1R,2R)-2-hydroxy-3,3-dimethylcyclobutyl]propionate 17 a and ethyl rel-($2 S$)-[rel-($1 R, 2 R$)-2-hydroxy-3,3-dimethylcyclobutyl]propionate 17b (entry 2, Table 1). As for the general procedure C . Ethyl (E)-2,5,5-trimethyl-6-oxohex-2enoate $\mathbf{4 a b}(100 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.$) , after a reaction time of$ 2.5 h , gave cyclobutanols $\mathbf{1 7 a}$ and $\mathbf{1 7 b}(67.0 \mathrm{mg}, 0.33 \mathrm{mmol}$, 66%) as a clear colourless oil. Careful chromatography (eluting with $10 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) allowed the two diastereoisomers to be separated (the major diastereoisomer eluting first): $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3448 \mathrm{~s}(\mathrm{OH}), 2957 \mathrm{~s}, 2867 \mathrm{~s}, 1731 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1461 \mathrm{~m}$, $1368 \mathrm{~m}, 1272 \mathrm{~m}, 1132 \mathrm{~m}, 1096 \mathrm{~m}$, and 1025 m ; (major diastereoisomer 17a) $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.60(1 \mathrm{H}, \mathrm{dd}, J 7.6,3.5, \mathrm{CHOH}), 2.49(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}), 2.42-$ $2.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 2.18-2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.71(1 \mathrm{H}$, apparent $\mathrm{t}, J 10.1,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHCH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.07(3 \mathrm{H}, \mathrm{s}$, CH_{3}), and $1.00\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 10.1,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.6\left(\mathrm{CO}_{2} \mathrm{Et}\right), 78.4(\mathrm{CHOH}), 60.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $44.2\left(\mathrm{CHCH}_{3}\right), 43.8(\mathrm{CH}), 37.6(\mathrm{C}), 32.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CHCH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right)$, and $14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; (minor diastereoisomer 17b) mp $57-60^{\circ} \mathrm{C}$ (hexane); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CHOH}), 2.49-$ $2.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 2.24-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.80(1 \mathrm{H}, \mathrm{d}$, $J 7.3, \mathrm{OH}), 1.64\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 10.2,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.26$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHCH}_{3}\right), 1.13(1 \mathrm{H}$, apparent $\mathrm{t}, J 10.2,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and 1.06 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.1(\mathrm{CO}), 78.0(\mathrm{CHOH})$, $60.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $44.4(\mathrm{CH}), 43.9\left(\mathrm{CHCH}_{3}\right)$, $38.3(\mathrm{C}), 32.3\left(\mathrm{CH}_{2}\right)$, $28.5(\mathrm{Me}), 20.9(\mathrm{Me}), 15.0\left(\mathrm{CHCH}_{3}\right)$, and $14.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
(Entry 3, Table 1). For deuterated 17a: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) as for $\mathbf{1 7 a}$ except $2.42-2.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$ missing; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as for $\mathbf{1 7 a}$ except $44.2\left(\mathrm{CHCH}_{3}\right)$ missing; m / z (CI mode, NH_{3}) 219 (100%), 184 (56), 96 (79), and 79 (34) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 202.1553. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{D}$ requires M, 202.1548).

For deuterated 17b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as for $\mathbf{1 7 b}$ except 2.49-2.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH})_{3}$ missing; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) as for 17b except $43.9\left(\mathrm{CHCH}_{3}\right)$ missing (Found: C, 65.67 ; H, 9.61. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{D}$ requires, $\left.\mathrm{C}, 65.64 ; \mathrm{H}, 9.51 \%\right)$.

Attempted cyclisation of ethyl 6-hydroxy-5-methylhexanoate 4b (entry 4, Table 1). As for the general procedure C. Ethyl (E)-5-methyl-6-oxohex-2-enoate $\mathbf{4 b}(20.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$.$) ,$ after a reaction time of 20 min which involved the addition of further samarium(II) iodide (1 eq.), gave ethyl 6-hydroxy-5methylhexanoate as the major product $(11.0 \mathrm{mg}, 0.07 \mathrm{mmol}$, 31%) after purification by column chromatography (eluting with $30 \% \mathrm{EtOAc}$ in hexane): $v_{\max }$ (soln. in CHCl_{3})/ $\mathrm{cm}^{-1} 3154 \mathrm{~m}$ $(\mathrm{OH}), 3012 \mathrm{~s}, 2983 \mathrm{w}, 1731 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 1467 \mathrm{~m}$, and $1217 \mathrm{~s} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.53-3.43(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH} \mathrm{C}_{2} \mathrm{OH}\right), 2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.73-1.57(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ from CH_{2} and 1 H from $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.49-1.40(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.21-1.09(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$, and $0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 174.1(\mathrm{C}=\mathrm{O})$, $68.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 35.7$ $(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), \quad 32.7\left(\mathrm{CH}_{2}\right), \quad 22.4\left(\mathrm{CH}_{2}\right), 16.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, and $14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}\right.$ mode, $\left.\mathrm{NH}_{3}\right) 192$ (100%), 175 (18), 146 (10), and 52 (8) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 175.1334. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{3}$ requires $M, 175.1329$).

Ethyl [rel-(1R,2R,3R)-3-(benzyloxy)-2-hydroxy-3-methylcyclobutyl]ethanoate (entry 5, Table 1). To samarium(II) iodide (0.1 M in THF, $1.60 \mathrm{ml}, 0.16 \mathrm{mmol}, 2$ eq.) and HMPA (0.11 ml ,
$0.64 \mathrm{mmol}, 8$ eq.) at $0^{\circ} \mathrm{C}$, was added a solution of aldehyde $4 \mathrm{c}(20.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 1 \mathrm{eq}$.$) and tert-butanol (0.01 \mathrm{ml}$, $0.10 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (0.3 ml). The resulting solution was then stirred for 30 min at $0^{\circ} \mathrm{C}$ before the addition of aqueous saturated $\mathrm{NaCl}(0.5 \mathrm{ml})$ and citric acid $(33.5 \mathrm{mg}, 0.16 \mathrm{mmol}$, 2 eq.). The aqueous layer was separated and extracted with EtOAc ($3 \times 1 \mathrm{ml}$), and the combined organic extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Purification by column chromatography (eluting with 30% EtOAc in hexane) gave ethyl [rel-($1 R, 2 R, 3 R / S$)-3-(benzyloxy)-2-hydroxy-3-methylcyclobutyl]ethanoate ($12.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 57 \%$) as a $4: 1$ mixture of diastereoisomers (the major diastereoisomer being the most polar): for the major diastereoisomer; $v_{\max }$ (soln. in $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3149 \mathrm{br} \mathrm{s}, 2987 \mathrm{~s}, 2914 \mathrm{~m}, 1817 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 1789 \mathrm{~m}$, $1721 \mathrm{~m}, 1637 \mathrm{~m}, 1598 \mathrm{~m}, 1570 \mathrm{~m}, 1464 \mathrm{~s}$, and $1385 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.35-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 4.50(\mathrm{AB}$ system, $1 \mathrm{H}, \mathrm{d}$, $J 11.4,1 \mathrm{H}$ from PhCH_{2}), 4.46 (AB system, $1 \mathrm{H}, \mathrm{d}, J 11.4,1 \mathrm{H}$ from PhCH$\left.)_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.96(1 \mathrm{H}, \mathrm{dd}, J 6.8$, $3.0, \mathrm{CHOH}), 2.76(1 \mathrm{H}, \mathrm{d}, J 3.0, \mathrm{OH}), 2.62(1 \mathrm{H}, \mathrm{dd}, J 16.7,5.5$, 1 H from $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.49(1 \mathrm{H}$, dd, $J 16.7,9.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.04\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 9.0,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$, 2.06-1.96 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.47\left(1 \mathrm{H}\right.$, obscured, 1 H from $\left.\mathrm{CH}_{2}\right)$, $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.5(\mathrm{C}=\mathrm{O}), 138.9(\mathrm{ArC}), 128.3(2 \times \mathrm{ArCH})$, $127.5(2 \times \mathrm{ArCH}), 127.4(\mathrm{ArCH}), 79.0(\mathrm{CHOH}), 78.8(\mathrm{C}), 65.3$ $\left(\mathrm{PhCH}_{2}\right), 60.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.7\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 33.4\left(\mathrm{CH}_{2}\right)$, $32.7(\mathrm{CH}), 16.9\left(\mathrm{CH}_{3}\right)$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$ mode, isobutane) 279 (26%), 261 (35), 187 (6), 171 (100), 169 (6), and 91 (8) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 279.1599. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}$ requires M, 279.1596).

Ethyl [rel-(1R,2R)-3,3-diallyl-2-hydroxycyclobutyl]ethanoate 15 (entry 6, Table 1). As for the general procedure C. Aldehyde $7 \mathrm{a}(40.0 \mathrm{mg}, 0.17 \mathrm{mmol}, 1 \mathrm{eq}$.$) , after a reaction time of 10 \mathrm{~min}$ and subsequent purification by column chromatography (eluting with 20% EtOAc in hexane), gave 15 ($32.2 \mathrm{mg}, 0.14$ $\mathrm{mmol}, 80 \%$) as a colourless oil: $v_{\text {max }}$ (soln. in CHCl_{3}) $/ \mathrm{cm}^{-1}$ $3451 \mathrm{br} \mathrm{s}, 2970 \mathrm{~s}, 2931 \mathrm{~s}, 1727 \mathrm{~s}, 1643 \mathrm{~m}, 1441 \mathrm{~m}, 1318 \mathrm{~m}$, and 1178s; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.96-5.75(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=)$, $5.13-5.02\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}=\right), 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.76$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.56(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{CHOH}), 2.51-2.28(5 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{2} \mathrm{CH}=$, and $\left.\mathrm{CHCH} \mathrm{CO}_{2} \mathrm{Et}\right), 2.20(1 \mathrm{H}, \mathrm{dd}, J 14.0,7.6$, 1 H from $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.09(1 \mathrm{H}, \mathrm{dd}, J 14.0,7.2,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.87(1 \mathrm{H}$, apparent dd, $J 11.6,8.8,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.03(1 \mathrm{H}$, apparent dd, $J 11.6,8.8,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.4(\mathrm{C}=\mathrm{O})$, $135.2(\mathrm{CH}=)$, $134.5(\mathrm{CH}=)$, $117.3\left(2 \times \mathrm{CH}_{2}=\right)$, $77.9(\mathrm{CHOH})$, $60.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 44.3(\mathrm{C}), 43.4\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 38.7\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $36.7(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, and $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (CI mode, isobutane) 239 (21\%), 221 (100), 193 (5), 175 (16), 147 (15), 133 (25), and 130 (14) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 239.1648. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $M, 239.1647$).

Ethyl [rel-(1R,2R)-1-hydroxyspiro[3.4]oct-6-en-2-yl]-

 ethanoate 16 and ethyl 4-[1-(hydroxymethyl)cyclopent-3-enyl]butanoate (entry 7, Table 1). As for the general procedure C. Ethyl (E)-4-(1-formylcyclopent-3-enyl)but-2-enoate 7b (50.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1 \mathrm{eq}$.$) , after a reaction time of 15 \mathrm{~min}$ and subsequent purification by column chromatography (eluting with 20% EtOAc in hexane), gave 16 ($31.0 \mathrm{mg}, 0.15 \mathrm{mmol}$, 62%) as a colourless oil; $v_{\text {max }}$ (soln. in CHCl_{3})/cm ${ }^{-1} 3524 \mathrm{br} \mathrm{m}$ $(\mathrm{OH}), 3013 \mathrm{~s}, 2931 \mathrm{~m}, 1721 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1381 \mathrm{~m}, 1216 \mathrm{~s}$, and 1093 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.71-5.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 5.53-5.59(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=), 4.14\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{d}, J 7.9$, $\mathrm{CHOH}), 2.98\left(1 \mathrm{H}, \mathrm{dt}, J 16.5,2.2,1 \mathrm{H}\right.$ from $\left.{ }^{\mathrm{A}} \mathrm{C} \mathrm{H}_{2} \mathrm{CH}=\right), 2.72$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.54-2.41\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right.$ and 1 H from $\left.{ }^{\mathrm{B}} \mathrm{C} \mathrm{H}_{2} \mathrm{CH}=\right), 2.34\left(1 \mathrm{H}, \mathrm{dt}, J 16.7,1.8,1 \mathrm{H}\right.$ from $\left.{ }^{\mathrm{B}} \mathrm{C}_{2} \mathrm{CH}=\right), 2.25$ (1 H , apparent sextet, $J 8.7, \mathrm{CH}$), $2.15(1 \mathrm{H}, \mathrm{dt}, J 16.5,1.8,1 \mathrm{H}$ from $\left.{ }^{\mathrm{A}} \mathrm{C} \mathrm{H}_{2} \mathrm{CH}=\right), 1.95\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 10.3,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$, $1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $1.24(1 \mathrm{H}$, apparent $\mathrm{t}, J 10.3$,1 H from CH_{2}); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.5(\mathrm{C}=\mathrm{O}), 129.5$ $(\mathrm{CH}=), 128.8(\mathrm{CH}=), 78.6(\mathrm{CHOH}), 60.5\left(\mathrm{OCH}_{2}\right), 48.1(\mathrm{C}), 45.4$ (${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}=$), $38.5\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 37.7\left({ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{CH}=\right)$, $37.7(\mathrm{CH})$, $34.4\left(\mathrm{CH}_{2}\right)$, and $14.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI mode, isobutane) 211 $(50 \%), 193(100), 165(4), 130(40)$ and $80(6)$ (Found: (M + H) ${ }^{+}$, 211.1333. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}$ requires $M, 211.1334$).

Further elution then gave ethyl 4-[1-(hydroxymethyl)-cyclopent-3-enyl]butanoate ($4.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 8 \%$) $v_{\text {max }}$ (soln. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3026 \mathrm{~s}, 2919 \mathrm{w}, 2841 \mathrm{w}, 1727(\mathrm{C}=\mathrm{O}), 1531 \mathrm{~m}$, $1469 \mathrm{w}, 1419 \mathrm{~m}, 1217 \mathrm{~s}$, and $1038 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.61$ $(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}=), 4.14\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.49(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.32\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.25(2 \mathrm{H}$, apparent d, $J 18.0,1 \mathrm{H}$ from each $\mathrm{CH}_{2} \mathrm{CH}=$), 2.15 (2 H , apparent d, $J 18.0$, 1 H from each $\mathrm{CH}_{2} \mathrm{CH}=$), 1.64-1.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 1.54-1.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), and $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.9(\mathrm{C}=\mathrm{O}), 129.2(2 \times \mathrm{CH}=), 68.9$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.1(\mathrm{C}), 41.3\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 36.6$ $\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $19.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, and 14.2 $\left(\mathrm{CH}_{3}\right) ; m / z$ (CI mode, isobutane) 213 (100\%), 195 (46), 167 (6) and 149 (6) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 213.1489. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3}$ requires M, 213.1491).
rel-(3R)-3-[rel-(1R,2R)-2-Hydroxy-3,3-dimethylcyclobutyl]-4,5-dihydrofuran-2(3H)-one (entry 8, Table 1). As for the general procedure C. Aldehyde $9(42 \mathrm{mg}, 0.23 \mathrm{mmol}, 1 \mathrm{eq}$.$) ,$ after a reaction time of 0.5 h and subsequent purification by column chromatography (eluting with $50 \% \mathrm{EtOAc}$ in hexane) gave ($3 R / S$)-3-[rel-($1 R, 2 R$)-2-hydroxy-3,3-dimethylcyclobutyl]4,5 -dihydrofuran-2(3 H)-one ($28 \mathrm{mg}, 0.15 \mathrm{mmol}, 66 \%$) as a $4: 1$ mixture of diastereoisomers: for the major diastereoisomer; $v_{\text {max }}$ (soln. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3548 \mathrm{~m}, 3025 \mathrm{~s}, 2961 \mathrm{~s}, 2925 \mathrm{~s}, 2867 \mathrm{~s}$, $1762 \mathrm{~s}, 1375 \mathrm{~s}, 1216 \mathrm{~s}, 1105 \mathrm{~s}$, and 1028 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $4.40\left(1 \mathrm{H}, \mathrm{td}, J 8.8,2.6,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.27-4.20(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.76(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{CHOH}), 2.81(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.60(1 \mathrm{H}, \mathrm{q}, J 9.6, \mathrm{CHCO}-\mathrm{O}), 2.38-2.30(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.23-2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.99-1.88$ $\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.71(1 \mathrm{H}, \mathrm{t}, J 9.9,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.16\left(1 \mathrm{H}\right.$, obscured, 1 H from $\left.\mathrm{CH}_{2}\right), 1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.0(\mathrm{C}=\mathrm{O}), 78.1$ $(\mathrm{CHOH}), 67.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 44.0\left(\mathrm{CHCO}_{2}\right), 41.6(\mathrm{CH}), 38.8$ (C), $32.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 21.0\left(\mathrm{CH}_{3}\right)$; m / z (CI mode, isobutane) $185(41 \%), 167$ (100), 149 (1), 128 (3), and 113 (2) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 185.1178. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}$ requires $M, 185.1173$).

rel-(1R,4S)-2,2-Dimethyl-4-(phenylsulfonylmethyl)cyclo-

 butan-1-ol and (\boldsymbol{E})-2,2-dimethyl-5-(phenylsulfonyl)pent-4-en-1-ol (entry 9, Table 1). As for the general procedure C. Aldehyde 11 ($20.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 1 \mathrm{eq}$.), after a reaction time of 2 h and subsequent purification by column chromatography (eluting with 30% EtOAc in hexane), gave rel-($1 R, 4 S$)-2,2-dimethyl-4-(phenylsulfonylmethyl)cyclobutan-1-ol ($4.0 \mathrm{mg}, 0.02 \mathrm{mmol}$, 21%) as a clear colourless oil: $v_{\max }$ (soln. in CDCl_{3}) $/ \mathrm{cm}^{-1}$ $3606 \mathrm{~m}, 3159 \mathrm{~m}, 3070 \mathrm{~m}, 3033 \mathrm{~m}, 2970 \mathrm{~s}, 2928 \mathrm{~m}, 2865 \mathrm{~m}, 1709 \mathrm{~s}$, $1598 \mathrm{~s}, 1451 \mathrm{~s}, 1309 \mathrm{~s}$, and $1152 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.94(2 \mathrm{H}$, d, $J 7.2,2 \times \mathrm{ArH}), 7.71-7.67(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.58(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}), 3.71(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{CHOH}), 3.26(2 \mathrm{H}$, apparent d, J 7.4, $\left.\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}\right), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.50-2.40(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH})_{2}\right), 1.72\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 10.1,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.11(6 \mathrm{H}$, s, $2 \times \mathrm{CH}_{3}$), and $1.07\left(1 \mathrm{H}\right.$, obscured 1 H from $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.4(\mathrm{ArC}), 134.0(\mathrm{ArCH}), 129.6(2 \times \mathrm{ArCH})$, $128.3(2 \times \mathrm{ArCH}), 79.0(\mathrm{CHOH}), 60.8\left(\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}\right), 39.6(\mathrm{C})$, $35.1(\mathrm{CH}), 33.7\left(\mathrm{CH}_{2}\right), 28.7(\mathrm{Me})$, and $20.8(\mathrm{Me}) ; m / z(\mathrm{CI}$ mode, $\left.\mathrm{NH}_{3}\right) 272(100 \%), 254$ (10), 237 (5), and 95 (2) (Found: $\mathrm{M}+\mathrm{NH}_{4}{ }^{+}$, 272.1320. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires M, 272.1315). Further elution then gave (E)-2,2-dimethyl-5-(phenylsulfonyl)-pent-4-en-1-ol ($7 \mathrm{mg}, 0.03 \mathrm{mmol}, 35 \%$) as a colourless oil: $v_{\text {max }}$ (soln. in CHCl_{3})/cm ${ }^{-1} 3627 \mathrm{~m}, 3017 \mathrm{~s}, 2965 \mathrm{~s}, 2928 \mathrm{~m}, 2875 \mathrm{~m}$, $1630 \mathrm{~m}, 1519 \mathrm{~m}$ (aromatic), $1446 \mathrm{~m}, 1320 \mathrm{~s}, 1309 \mathrm{~s}, 1215 \mathrm{~s}$, and $1146 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.89(2 \mathrm{H}, \mathrm{d}, J 8.6,2 \times \mathrm{ArH})$,7.64-7.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.57-7.53(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.03(1 \mathrm{H}$, $\left.\mathrm{dt}, J 14.9,8.0, \mathrm{CH}_{2} \mathrm{CH}=\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J 14.9,=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 3.34$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.22\left(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}_{2} \mathrm{CH}=\right)$, and $0.93(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.5\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 140.9$ $(\mathrm{ArC}), 133.5(\mathrm{ArCH}), 132.6\left(=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 129.4(2 \times \mathrm{ArCH})$, $127.7(2 \times \mathrm{ArCH}), 71.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.7\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 36.5(\mathrm{C})$, $24.1(2 \times \mathrm{Me})$; m / z (CI mode, isobutane) 255 (100%), 237 (73), 198 (2), 154 (2), 143 (2), 125 (3), 113 (4), 95 (14), and 81 (12) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 255.1055. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}$ requires M, 255.1050).

Ethyl [(1S,3R,4R)-3-(benzyloxy)-4-hydroxy-2,2-dimethylcyclobutyl]ethanoate ${ }^{7}$ (entry 10, Table 1). As for the general procedure. Ethyl ($E, 5 R$)-5-(benzyloxy)-4,4-dimethyl-6-oxohex-2-enoate 13 ($42 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ eq.), after a reaction time of 20 min and subsequent purification by column chromatography (eluting with 20% EtOAc in hexane) gave ethyl $[(1 S, 3 R, 4 R)$ -3-(benzyloxy)-4-hydroxy-2,2-dimethylcyclobutyl]ethanoate (30 $\mathrm{mg}, 0.11 \mathrm{mmol}, 70 \%$) as a colourless oil: $[a]_{\mathrm{D}}-26.2(c 0.91$, CHCl_{3}); $v_{\text {max }}$ (soln. in CHCl_{3})/ $\mathrm{cm}^{-1} 3527 \mathrm{br} \mathrm{m}, 3023 \mathrm{~s}, 2959 \mathrm{~m}$, $2875 \mathrm{~m}, 1719 \mathrm{~s}, 1451 \mathrm{w}$, and $1372 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-$ $7.26(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 4.61(\mathrm{AB}$ system, $1 \mathrm{H}, \mathrm{d}, J 11.9,1 \mathrm{H}$ from PhCH_{2}), 4.58 (AB system, $1 \mathrm{H}, \mathrm{d}, J 11.9,1 \mathrm{H}$ from PhCH_{2}), 4.15 $\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.81(1 \mathrm{H}$, apparent $\mathrm{t}, J 6.2, \mathrm{CHOH})$, $3.51(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CHOBn}), 2.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.51-2.38$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.73-1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) , $1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 173.9(\mathrm{C}=\mathrm{O}), 138.5(\mathrm{ArC}), 128.3(2 \times \mathrm{ArCH}), 127.6$ $(2 \times \mathrm{ArCH}), 127.5(\mathrm{ArCH}), 86.0(\mathrm{CHOBn}), 75.8(\mathrm{CHOH}), 71.5$ $\left(\mathrm{PhCH}_{2}\right), 60.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.4(\mathrm{CH}), 35.5(\mathrm{C}), 32.8\left(\mathrm{CH}_{2}\right), 29.2$ (Me), 17.6 (Me), and $14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}$ mode, isobutane) 293 (66\%), 275 (100), 257 (11), 229 (10), 185 (34), 162 (22), and 91 (18) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 293.1753. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4}$ requires M, 293.1753).
(4R,2S,1R)-4-(Benzyloxy)-3,3-dimethyl-2-(phenylsulfonylmethyl)cyclobutanol and (E)-3,3-dimethyl-5-(phenylsulfonyl)-pent-4-enal (entry 11, Table 1). As for the general procedure. The aldehyde 14 ($22 \mathrm{mg}, 0.06 \mathrm{mmol}, 1 \mathrm{eq}$.$) in THF (0.3 \mathrm{ml}$), after a reaction time of 15 min and subsequent purification by column chromatography (eluting with $40 \% \mathrm{EtOAc}$ in hexane), gave byproduct (E)-3,3-dimethyl-5-(phenylsulfonyl)pent-4-enal $(4.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 26 \%)$ as a colourless oil: $v_{\max }$ (soln. in $\left.\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3013 \mathrm{~s}, 1709 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1522 \mathrm{~m}, 1469 \mathrm{~m}, 1422 \mathrm{~m}$, 1304 s , and $1152 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{t}, J 2.3$, CHO), $7.89(2 \mathrm{H}, \mathrm{d}, J 7.8,2 \times \mathrm{ArH}), 7.65-7.60(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.58-7.54(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{CH}=\mathrm{CH}-$ $\left.\mathrm{SO}_{2} \mathrm{Ph}\right), 6.28\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{CH}=\mathrm{C} H \mathrm{SO}_{2} \mathrm{Ph}\right), 2.50(2 \mathrm{H}, \mathrm{d}, J 2.3$, $\left.\mathrm{CH}_{2} \mathrm{CHO}\right)$, and $1.23(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 200.1 (CHO), 153.0 ($\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}$), 140.3 (ArC), 133.4 $(\mathrm{ArCH}), 129.3(2 \times \mathrm{ArCH}), 128.5\left(\mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{Ph}\right), 127.6(2 \times$ $\mathrm{ArCH}), 54.1\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{C})$, and $26.5\left(2 \times \mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}$ mode, isobutane) 253 (100%), 209 (19), 143 (4), 125 (4), 111 (2), and 79 (7) (Found: $(\mathrm{M}+\mathrm{H})^{+}, 253.0900 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}$ requires M, 253.0898). Further elution then gave $(4 R, 2 S, 1 R)$-4-(benzyloxy)-3,3-dimethyl-2-(phenylsulfonylmethyl)cyclobutanol (13.0 mg , $0.036 \mathrm{mmol}, 60 \%)$ as a colourless oil: $[a]_{\mathrm{D}}-19.2\left(c 0.9, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (soln. in $\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 3548 \mathrm{br} \mathrm{s}, 2961 \mathrm{~s}, 1604 \mathrm{~m}, 1522 \mathrm{~s}$, $1463 \mathrm{~s}, 1387 \mathrm{~m}$, and $1299 \mathrm{~s} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.94(2 \mathrm{H}, \mathrm{d}$, $J 7.2,2 \times \mathrm{ArH}), 7.71-7.66(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.44(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}), 7.38-7.27\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 4.63(\mathrm{AB}$ system, 1 H , d, $J 11.9,1 \mathrm{H}$ from PhCH_{2}), 4.58 (AB system, $1 \mathrm{H}, \mathrm{d}, J 11.9,1 \mathrm{H}$ from PhCH_{2}), $4.03(1 \mathrm{H}$, apparent $\mathrm{td}, J 6.4,2.8, \mathrm{CHOH}), 3.58$ $(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{C} H \mathrm{OBn}), 3.21(1 \mathrm{H}, \mathrm{dd}, J 13.9,4.4,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J 13.9,10.8,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}\right)$, $3.05(1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{OH}), 1.84-1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.09(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me})$, and $0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.0$ $(\mathrm{ArC}), 138.3(\mathrm{ArC}), 138.1(\mathrm{ArCH}), 134.0(2 \times \mathrm{ArCH}), 129.4$ $(2 \times \mathrm{ArCH}), \quad 128.4(2 \times \mathrm{ArCH}), \quad 127.6(3 \times \mathrm{ArCH}), \quad 85.1$ $(C H O B n), 74.5(\mathrm{CHOH}), 71.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.9\left(\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}\right)$,
$40.3(\mathrm{CH}), 36.5(\mathrm{C}), 28.9\left(\mathrm{CH}_{3}\right)$, and $17.7\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$ mode, isobutane) 361 (64%), 343 (100), 325 (17), 251 (19), 223 (12), 201 (37), 183 (57), 162 (18), 127 (10), and 91 (20) (Found: $(\mathrm{M}+\mathrm{H})^{+}$, 361.1475. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}$ requires M, $361.1474)$.

Ethyl (rel-(1R,2R)-1-hydroxyspiro[3.4]oct-6-en-2-yl)ethanoate 16 (by ring-closing metathesis). To $\mathbf{1 5}(18.0 \mathrm{mg}, 0.08$ $\mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ was added $\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}-$ $(\mathrm{Cl})_{2}=\mathrm{CHPh}(11.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2 \mathrm{eq}$.) and the solution heated at reflux for 1 h . The reaction mixture was passed down a short silica gel column (eluting with $20 \% \mathrm{EtOAc}$ in hexane). Concentration in vacuo then gave crude $\mathbf{1 6}$ as a dark oil. Purification by column chromatography (eluting with 20% EtOAc in hexane) then gave $\mathbf{1 6}(15.1 \mathrm{mg}, 0.07 \mathrm{mmol}, 95 \%)$ as a colourless oil.
rel-(1R,4R)-4-[(1R)-2-Hydroxy-1-deuteromethylethyl]-2,2-
dimethylcyclobutanol 18. To a stirred solution of deuterated cyclobutanol 17a ($30 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (1 ml), at $0^{\circ} \mathrm{C}$ was added LiAlH_{4} ($11.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 2$ eq.). After 1.5 h the reaction mixture was transferred to a solution of K / Na tartrate ($421 \mathrm{mg}, 1.49 \mathrm{mmol}, 10 \mathrm{eq}$.) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ and the resulting mixture stirred for 10 min . The aqueous layer was then separated and extracted with EtOAc $(4 \times 5 \mathrm{ml})$ and the combined organic extracts dried $\left(\mathrm{NaSO}_{4}\right)$. Concentration in vacuo gave crude $\mathbf{1 8}$ as a clear colourless oil. The residue was then purified by sublimation which gave 18 as a white crystalline solid ($14.0 \mathrm{mg}, 0.09 \mathrm{mmol}, 59 \%$), $\mathrm{mp} 61-63^{\circ} \mathrm{C}$: $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3685 \mathrm{~m}(\mathrm{OH}), 3601 \mathrm{w}, 3017 \mathrm{~s}, 2954 \mathrm{~s}$, 2933m, 1604w, 1525m, $1477 \mathrm{~m}, 1420 \mathrm{~m}, 1078 \mathrm{~m}$, and $1020 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.65$ (1 H , dd, $J 11.0,8.3,1 \mathrm{H}$ from $\mathrm{CH}_{2} \mathrm{OH}$), 3.58 (1 H , dd, $J 7.6,5.8$, $\mathrm{CHOH}), 3.37\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,4.0,1 \mathrm{H}\right.$ from $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.60(1 \mathrm{H}$, dd, J 8.3, 4.0, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.37$ ($1 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{CHOH}$), 1.79-1.69 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.67\left(1 \mathrm{H}\right.$, apparent $\mathrm{t}, J 9.9,1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.09$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.01(1 \mathrm{H}$, apparent $\mathrm{t}, J 9.9,1 \mathrm{H}$ from CH_{2}), and $0.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CDCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $79.3(\mathrm{CHOH}), 68.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 46.3(\mathrm{CH}), 37.7(\mathrm{C}), 32.1\left(\mathrm{CH}_{2}\right)$, $28.6(\mathrm{Me}), 20.8(\mathrm{Me})$, and $14.1\left(\mathrm{CDCH}_{3}\right)$ ['CD' signal not observed]; $m / z\left(\mathrm{CI}\right.$ mode, $\left.\mathrm{NH}_{3}\right) 177$ (16\%), 159 (10), 142 (4), 124 (1), 88 (1), and 77 (1) (Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 177.1713. $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{DNO}_{2}$ requires $M, 177.1708$).

Crystal structure determination

The crystals sublime at room temperature but proved stable at 123 K when mounted in a Lindemann glass capillary. All measurements were made with Mo X-rays on a CAD4 diffractometer.

Crystal data for 18. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}, M=158.23$, orthorhombic, $a=8.254(2), b=11.229(2), c=20.088(2) \AA, U=1861.8(5) \AA^{3}$, $T=123 \mathrm{~K}$, space group Pbna (No. 60), $Z=8, \mu\left(\mathrm{Mo}-\mathrm{K}_{\mathrm{a}}\right)$ $0.08 \mathrm{~mm}^{-1}, 2044$ reflections measured, 1454 unique F^{2} values used in refinement ($R_{\text {int }}=0.056$). $R_{1}[933$ with $I>2 \sigma(I)]=0.051$, $w R_{2}($ all data $)=0.14{ }^{26}$

The parameters of the hydroxylic H atoms were freely refined since $O(1)$ and $O(2)$ act both as hydrogen bond donors and acceptors. Molecules of $\mathbf{1 8}$ are linked into chains through an $\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(2)-\mathrm{H}$ hydrogen bond system $[\mathrm{O} \cdots \mathrm{O}$ $2.754(3) \& 2.734(3) \AA]$. CCDC reference number 207/394. See http://www.rsc.org/suppdata/p1/a9/a909549g

Acknowledgements

We wish to thank the EPSRC for financial support (GR/ M13572, project studentship to D. J.) and Mr J. Gall from the NMR Spectroscopy Laboratory at the University of Glasgow for technical assistance.

References

1 For recent reviews, see: G. A. Molander, Chem. Rev., 1992, 92, 29; G. A. Molander, Org. React., 1994, 46, 211; A. Krief and A.-M Laval, Chem. Rev., 1999, 99, 745; J. A. Soderquist, Aldrichimica Acta, 1991, 24, 15.
2 G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307; T. Skrydstrup, Angew. Chem., Int. Ed. Engl., 1997, 36, 345; G. A. Molander and C. R. Harris, Tetrahedron, 1998, 54, 3321.

3 G. A. Molander and C. del Pozo Losada, J. Org. Chem., 1997, 62, 2935 and references cited therein.
4 M. E. Jung and R. Marquez, Tetrahedron Lett., 1997, 38, 6521; M. E. Jung, I. D. Trifunovich and N. Lensen, Tetrahedron Lett. 1992, 33, 6719; K. Ogura, N. Sumitani, A. Kayano, H. Iguchi and M. Fujita, Chem. Lett., 1992, 1487; P. Piccardi, P. Massardo, M. Modena and E. Santoro, J. Chem. Soc., Perkin Trans. 1, 1973, 982; see also ref. 15.
5 A similar 'trapping' strategy has recently been proposed in a samarium(II)-mediated 3-exo-trig cyclisation: H. David, C. Afonso, M. Bonin, G. Doisneau, M.-G. Guillerez and F. Guibe, Tetrahedron Lett., 1999, 40, 8557.
6 A mechanistically ambiguous, magnesium-mediated reductive cyclisation of ketones tethered to olefins bearing ester and nitrile groups has been reported: G. H. Lee, E. B. Choi, E. Lee and C. S. Pak, Tetrahedron Lett., 1995, 36, 5607.
7 K. Weinges, S. B. Schmidbauer and H. Schick, Chem. Ber., 1994, 127, 1305.
8 D. Johnston, C. M. McCusker and D. J. Procter, Tetrahedron Lett., 1999, 40, 4913.
9 For some recent examples, see: A. A. Ahmed and A. A. Mahmoud, Tetrahedron, 1998, 54, 8141; M. Clericuzio, J. Fu, F. Pan, Z. Pang and O. Sterner, Tetrahedron, 1997, 53, 9735; H. Hara, N. Maruyama, S. Yamashita, Y. Hayashi, K.-H. Lee, K. F. Bastow, Chairul, R. Marumoto and Y. Imakura, Chem. Pharm. Bull., 1997, 45, 1714; M. Pulici, F. Sugawara, H. Koshino, J. Uzawa, S. Yoshida, E. Lobkovsky and J. Clardy, J. Org. Chem., 1996, 61, 2122.

10 For some recent examples, see: M. Martin-Vila, C. Minguillon and R. M. Ortuno, Tetrahedron: Asymmetry, 1998, 9, 4291; B. Brown and L. S. Hegedus, J. Org. Chem., 1998, 63, 8012 and references cited therein.

11 For some recent non-[2 +2] approaches to cyclobutanes, see: E. Piers, E. M. Boehringer and J. G. K. Yee, J. Org. Chem., 1998, 63, 8642; A. M. Bernard, C. Floris, A. Frongia and P. P. Piras, Synlett, 1998, 668; K. Takeda and T. Tanaka, Synlett, 1999, 705; H. Ito, A. Sato and T. Taguchi, Tetrahedron Lett., 1999, 40, 3217; A. G. Griesbeck, H. Heckroth and J. Lex, Chem. Commun., 1999, 1109; the preparation of functionalised cyclobutanols using samarium(II)mediated nucleophilic acyl substitutions has recently been reported: G. A. Molander and C. R. Harris, J. Org. Chem., 1998, 63, 4374; G. A. Molander and C. R. Harris, J. Org. Chem., 1997, 62, 2944.

12 J. E. Baldwin, M. G. Moloney and A. F. Parsons, Tetrahedron, 1992, 48, 9373.
13 J. W. Lee and D. Y. Oh, Synth. Commun., 1989, 19, 2209.
14 E. Hasegawa and D. P. Curran, J. Org. Chem., 1993, 58, 5008.
15 M. E. Jung, R. Marquez and K. N. Houk, Tetrahedron Lett., 1999, 40, 2661; S.-U. Park, T. R. Varick and M. Newcomb, Tetrahedron Lett., 1990, 31, 2975; see also ref. 4.
16 G. A. Molander and C. Kenny, J. Am. Chem. Soc., 1989, 111, 8236.
17 S. J. F. Macdonald, K. Mills, J. E. Spooner, R. J. Upton and M. D. Dowle, J. Chem. Soc., Perkin Trans. 1, 1998, 3931.

18 T. Inokuchi, H. Kawafuchi and S. Torii, J. Org. Chem., 1991, 56, 4983.

19 P. Erdmann, J. Schafer, R. Springer, H.-G. Zeitz and B. Giese, Helv. Chim. Acta, 1992, 75, 638.
20 It has recently been suggested that samarium(III) and its associated ligands are as sterically demanding as a tert-butyl group: G. E. Keck, C. A. Wager, T. Sell and T. T. Wager, J. Org. Chem., 1999, 64, 2172.
21 T. Imamoto and M. Ono, Chem. Lett., 1987, 501.
22 J. R. Stille and R. H. Grubbs, J. Org. Chem., 1989, 54, 434.
23 D. J. Collins and A. M. James, Aust. J. Chem., 1989, 42, 223.
24 T. Sugai, H. Kakeya and H. Ohta, Tetrahedron, 1990, 46, 3463.
25 G. A. Molander and C. R. Harris, J. Am. Chem. Soc., 1995, 117, 3705.

26 Programs used: SHELX97-Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998; WinGX-A Windows Program for Crystal Structure Analysis. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.

Paper a909549g

